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Abstract—Models of human mobility have broad applicability
in urban planning, ecology, epidemiology, and other fields. Start-
ing with Call Detail Records (CDRs) from a cellular telephone
network that have gone through a straightforward anonymization
procedure, the prior WHERE modeling approach produces
synthetic CDRs for a synthetic population. The accuracy of
WHERE has been validated against billions of location samples
for hundreds of thousands of cell phones in the New York and
Los Angeles metropolitan areas. In this paper, we introduce DP-
WHERE, which modifies WHERE by adding controlled noise
to achieve differential privacy, a strict definition of privacy that
makes no assumptions about the power or background knowledge
of a potential adversary. We also present experiments showing
that the accuracy of DP-WHERE remains close to that of
WHERE and of real CDRs. With this work, we aim to enable
the creation and possible release of synthetic models that capture
the mobility patterns of real metropolitan populations while
preserving privacy.

I. INTRODUCTION

Models of human mobility have wide applicability to
infrastructure and resource planning, analysis of infectious
disease dynamics, ecology, and more. The abundance of
spatiotemporal data from cellular telephone networks affords
new opportunities to construct such models. Furthermore, such
data can be gathered with greater detail at larger scale and
lower cost than traditional methods, such as census surveys.

Prior work introduced the WHERE (Work and Home Ex-
tracted REgions) approach to mobility modeling [19]. In
WHERE, aggregated collections of cellphone Call Detail
Records (CDRs) form the basis of a mobility model that
can be used to characterize a city’s commute patterns and
enable the exploration of what-if scenarios regarding changes
in residential density, telecommuting popularity, etc. Starting
with CDRs from a cellular telephone network that have gone
through a straightforward anonymization procedure, WHERE
produces synthetic CDRs for a synthetic population. WHERE
has been experimentally validated against billions of location
samples for hundreds of thousands of cell phones in the New
York and Los Angeles metropolitan areas.

While human mobility models have the potential for great
societal benefits, privacy concerns regarding their use of indi-
viduals’ location data have inhibited their release and wider
use. Although WHERE intuitively provides some privacy
because it rests on aggregated distributions of sampled and
anonymized data, a more rigorous assurance of privacy can
further advance safe and widespread use of such techniques.

In this paper, we present and evaluate DP-WHERE, a differ-
entially private version of WHERE. DP-WHERE satisfies the
rigorous requirements of differential privacy while retaining
WHERE’s usefulness for predicting movement of human pop-
ulations in metropolitan areas. Differential privacy [7] makes

privacy a mathematical requirement on the results of interac-
tions with data. In particular, differential privacy captures the
intuition that, in order to provide privacy to individuals, the
results of an interaction with a database should be almost the
same whether or not any particular individual is present in
a database. This is a strong notion of privacy that makes no
assumptions about the power or background knowledge of a
potential adversary.

DP-WHERE achieves differential privacy by adding con-
trolled noise to the set of empirical probability distributions
that WHERE uses, for example distributions of home and work
locations. DP-WHERE then proceeds identically to WHERE
by systematically sampling these distributions to generate
synthetic CDRs containing synthetic locations and associated
times. Because none of these sampling steps require further
access to the original CDRs, it would be possible for the
data holder to release the noisy distributions while retaining
differential privacy. Among possible uses, these distributions
would allow others to produce their own synthetic CDR
traces for any desired population size, time duration, or other
parameters.

Overall, our work shows that modest revisions to a mobility
model drawn from real-world and large-scale location data
allow for rigorous demonstrations of its privacy without overly
compromising its utility. Specific contributions of our work
include the following:

• We are, to our knowledge, the first to produce and eval-
uate a differentially private approach for modeling human
mobility based on large sets of cellular network data.
• Our experiments show that differential privacy can be

achieved with only a modest and acceptable reduction in
accuracy. In particular, across a wide array of experiments
involving 10,000 synthetic users moving across more than
14,000 square miles, the distance between synthetic and real
population density distributions for DP-WHERE differed by
only 0.17–2.2 miles from those of WHERE.
• More broadly, this work shows that there is reason for op-

timism regarding the judicious use of Big Data repositories
of potentially sensitive information. We show the value of
a multi-pronged approach to privacy: Our model starts with
attributes (such as sampling and aggregation) that make it
intrinsically well suited to offering some intuitive degree of
privacy. We subsequently modify the steps of the modeling
algorithm to rigorously implement differential privacy.

Fig. 1 outlines DP-WHERE and its changes to WHERE.
We provide background on WHERE and differential privacy
in Sec. II, describe DP-WHERE in Sec. III, evaluate its utility
in Sec. IV, and discuss related work in Sec. V.
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Fig. 1: Overview of DP-WHERE, which modifies WHERE by
adding noise to achieve differentially private versions of the input
probability distributions. The rest of WHERE remains unchanged.

II. BACKGROUND

A. WHERE

DP-WHERE is based on WHERE, which produces models
of how populations move within metropolitan areas [19].
WHERE generates sequences of times and locations that
aim to capture how people move between important places
in their lives, such as home and work. Previous work has
shown that people spend most of their time at a few such
places [12, 16, 30]. WHERE aggregates the movements of
many synthetic individuals to reproduce human densities over
time at the geographic scale of metropolitan areas.

WHERE draws information from either CDR traces or
public sources (e.g., the US Census Bureau). It then creates
a set of probability distributions that it uses to drive the
generation of synthetic CDRs for the region being modeled.
This paper uses as its starting point the version of WHERE
that uses CDR traces as its data source. As shown in Fig. 6,
this source yields substantially better experimental results than
using current publicly available data sources.

The WHERE modeling algorithm takes as input a database
of simplified CDRs. (Complete CDRs contain details not
relevant to mobility, e.g., call-termination codes.) Each row of
this database corresponds to a single voice call or text message,
both of which we refer to interchangeably as calls. WHERE
thus uses a database D of m entries corresponding to calls
made by n distinct users. Each user is indexed by a unique
anonymized user ID in the set [n] = {1, 2, . . . n}. The calls
were made in a given metropolitan area divided into smaller
geographic areas by imposing a square grid of d× d cells.

WHERE leverages earlier work that estimates important
places in people’s lives (e.g., home and work) by applying
clustering and regression methods to the CDRs in D [16].
In order to work with a single database in DP-WHERE, we
append to each CDR entry these inferred home and work
locations for the corresponding user. Thus, for the purposes

of DP-WHERE, each row of D contains the following fields:
id, date, time, lat, long, home, and work.

At its core, WHERE uses D to construct cumulative
distribution functions (CDFs) for the following probability
distributions (see also Fig. 1):

1) Home and Work : For each grid cell, all users with
inferred home locations in that grid cell are counted (and
normalized) to produce a probability distribution Home over
the grid cells. Similarly, a Work distribution is constructed
from the inferred work locations of users in the database.

2) CommuteDistance: WHERE allows for a coarser grid
to be used for commute distances than for home and work
locations by merging adjoining cells in the underlying d × d
grid to yield a dc×dc grid. We refer to this coarser grid as the
commute grid. For each cell in the commute grid, WHERE
creates an empirical distribution of commute distances (i.e.,
distance between home and work) for people whose home
locations are in that grid cell, leading to a total of d2c of these
CommuteDistance distributions.

3) CallsPerDay: WHERE computes an empirical distri-
bution CallsPerDay over the set C = {µmin, . . . µmax} ×
{σmin, . . . σmax} of possible rounded values of means and
standard deviations of numbers of calls per day made by users.

4) ClassProb and CallTime: For each user in D, WHERE
computes the distribution of when calls are made through-
out the day. These per-user distributions are then combined
using X-Means clustering into two classes [19]. Each user
belongs to one of two user classes with a probability specified
by ClassProb. Subsequently, using the CDR database, per-
minute call probability distributions CallTime are computed
separately for each user class.

5) HourlyLocs: For each hour of the day, WHERE com-
putes a distribution of calls made over the grid cells. Each of
those 24 distributions reflects the probability of users being at a
given location during that hour. The HourlyLocs distributions
are not tied to a specific user, but represent the calling activity
across the entire metropolitan area during each hour.

As shown in Fig. 1, subsequent stages of WHERE use the
above distributions to produce synthetic CDRs for any number
of synthetic users and any length of simulated time. WHERE
generates a synthetic user as follows. It first selects a home
location by sampling from Home . It then selects a commute
distance c by sampling CommuteDistance for the commute-
grid cell in which the home lies. Finally, it selects a work
location by sampling from Work while restricted to locations
at distance c from the home location.

WHERE then generates synthetic call times and locations
for a synthetic user i as follows. First, it samples from
CallsPerDay to obtain a (µi, σi) tuple that represents i’s
calling frequency. Second, it samples from the normal distri-
bution with a mean µi and standard deviation σi to determine
the number of calls q that i makes in the current simulated
day. Third, it samples from ClassProb to assign i one of two
classes of calling time patterns. Fourth, it samples CallTime
to select the times of day for the q calls that day. Finally, it
samples HourlyLocs to determine the locations of these calls
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while restricted to the user’s home and work locations.
The synthetic CDR traces that comprise the output of

WHERE have been shown to agree closely across a variety of
metrics with real-world CDR traces for hundreds of thousands
of users moving over metropolitan regions of thousands of
square miles [19].

B. Differential Privacy
Differential privacy formalizes the idea that results of a

data analysis should be almost the same whether or not
an individual is in the database, even for individuals with
unusual behaviors. This implies that the risk to an individual
associated with a data analysis—including the risk of being
identified—does not depend on whether the individual is in
the database or not. This guarantee holds regardless of the
external information available to an adversary. Differential
privacy relies on the notion of neighboring databases [7]—in
our context, two neighboring CDR databases. In our context,
CDR databases D and D′ are neighbors if they differ in the
records of exactly one user (who may have made many calls).

Definition 1 (Neighbors). Two CDR databases D and D′ are
neighbors if D ⊂ D′ and there is some k ∈ [n] such that for
every record r ∈ D′ ⊕ D, id(r) = k (where id(r) denotes
the user id in r).

Definition 2 ([7]). A randomized algorithm A is ε-
differentially private if for all neighboring input data sets
D, D′ and for all S ⊆ Range(A), Pr[A(D) ∈ S] ≤
exp(ε) · Pr[A(D′) ∈ S].

That is, the output distributions for a differentially private A
are similar for any two neighboring databases. The smaller the
value of ε, the closer these two distributions are, and hence, the
higher the privacy. The appropriate value for ε is a largely open
policy question that depends on both privacy and accuracy
needs. A wide range of values of ε, e.g., from 0.01 to 2.3,
have been used in recent work [8, 22, 24].

An important notion in the application of differential pri-
vacy, the global sensitivity [7] of a function of a database is the
maximum change in the value of the function over neighboring
databases:

Definition 3 ([7]). The global sensitivity of a function f :
D → R` is GSf := maxD,D′ ‖f(D) − f(D′)‖1, where D
and D′ are neighboring databases.

One way to achieve differential privacy is to add noise to
each element of the outcome of f that is proportional to the
global sensitivity of f [7]. Specifically, let Lap(0, λ) denote a
Laplace distribution with mean 0 and standard deviation

√
2λ,

and let 〈Lap(0, λ)〉` denote a length-` vector of independent
random samples from this distribution.

Theorem 1 ([7]). For any f : D → R`, and ε > 0, the
following mechanism A, called the Laplace mechanism, is ε-
differentially private: Af (D) = f(D) + 〈Lap(GSf /ε)〉`.

We make extensive use of the Laplace mechanism in DP-
WHERE. Another generalized way of achieving differential

privacy is the exponential mechanism [26]. Informally, the
mechanism induces a probability distribution on Range(A)
that is exponentially biased in favor of outputs that are closer
to the real answer f(D). Differential privacy for multi-step
algorithms can be provided by breaking the algorithm down
into multiple interactions with the database, each of which is
itself differentially private. Thms. 2 and 3 formalize this:

Theorem 2 (Serial Composition [7]). For i ∈ [k], let Ai(D)
be an εi-differentially private mechanism executed on database
D. Then, any mechanism A that is a composition of A1,A2,
. . . , Ak, is

∑
i εi-differentially private.

Theorem 3 (Parallel Composition [7]). For i ∈ [k], let Ai(D)
be an εi-differentially private mechanism executed on partition
Di of the database D, such that ∀i, j |Di ∩ Dj | = 0, and
each user appears in exactly one of the Di’s. Then, any
mechanism A that is a composition of A1,A2, . . . , Ak is
maxi εi-differentially private.

III. DIFFERENTIALLY PRIVATE WHERE
Our new approach, DP-WHERE, modifies WHERE to pro-

vide differential privacy while retaining the accuracy of the
original WHERE approach. As described in Section II-A,
WHERE creates and samples from several spatiotemporal
distributions. In DP-WHERE, we render each of these distri-
butions εi-differentially private, then apply Thms. 2 and 3 to
arrive at an ε-differentially private algorithm, where ε =

∑
i εi.

For each distribution, we specify a privacy budget εi that will
not be exceeded. The remainder of this section describes DP-
WHERE in detail.

A. Pre-processing
Before the algorithm executes, we perform a pre-processing

step that removes all users who make more than a maximum
threshold MaxCallsHr of calls per hour. This limits the impact
of any one user on the dataset. Our experimental evaluation
sets MaxCallsHr to 120 which makes it likely that any filtered
caller is an auto-dialer; Section IV shows it yields good results.

B. Distributions
1) Home and Work: We compute differentially private

empirical CDFs for Home and Work . Let εhome and εwork be
the privacy budgets allocated to computing Home and Work ,
respectively. CountHomeNum(i) returns the number of dis-
tinct users in the database D with homes in the ith grid cell (in
the chosen canonical ordering). Note that the global sensitivity
(Def. 3) of 〈CountHomeNum(1), . . . ,CountHomeNum(d2)〉
is 2, since each user can change his home location from grid
cell i to another grid cell j, reducing the count in grid cell
i by 1 and increasing j’s count by 1. Applying the Laplace
mechanism described in Thm. 1, Alg. III.1 provides an εhome-
differentially private approximation of Home . Similarly, the
Laplace mechanism achieves an εwork-differentially private
CDF for Work .

The noisy “CDF” does not correspond to a legitimate proba-
bility distribution, as the noisy counts are not necessarily non-
decreasing. We use Hay et al.’s post-processing techniques [13]
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Algorithm III.1: DPHOMECDF(D, εhome)

Count← 0
for i← 1 to d2

do


Count← Count+CountHomeNum(i)+

Lap(0, 2
εhome

).
CDF[i]← Count .

CDF← PostProc(CDF)
output (CDF)

to clean up this noise and create a legitimate (non-decreasing)
CDF, denoted by PostProc in Alg. III.1. The postprocessing
method does not need to access the original private data, so
Thms. 1 and 3 imply:

Lemma 1. Alg. III.1 is εhome-differentially private. The equiv-
alent algorithm for Work is εwork-differentially private.

Fig. 2 shows the CDFs of the Home distribution for
different values of εhome and the original empirical CDF. (The
dataset and parameters used for the figures are described in
detail in Section IV.) The private version of Home is very
close to its non-private counterparts even for very low values
of εhome. Only for extreme values of ε such as 0.000001 are
the differences even noticeable at this graph scale.
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Fig. 2: CDF of Home distribution for different values of εhome.

2) Commute Distance: As in WHERE, we impose a dc×dc
commute grid on the geographical area. We first create a data
structure Di that contains the counts of commute distances of
users (in CDR database D) with home locations in grid cell
i. We wish to avoid having empty grid cells, and to do so in
a data-oblivious manner so that we do not spend more of our
privacy budget. We therefore add two commute distances (of
0 and 0.1 miles) to every commute grid cell.

In WHERE, the CDF of a commute distribution is con-
structed by using the actual commute distances as histogram
bins. In DP-WHERE, for privacy reasons, we cannot use
the actual commute distances of a grid cell’s residents as
histogram bins. Instead, as shown in Alg. III.2, we create a per-
commute-grid-cell data-dependent histogram of commute dis-
tances in a differentially private way, and then sample from this
(normalized) histogram. The data-dependent histogram bins
also need to be created in a differentially private manner. Let

Algorithm III.2: COMMUTECDFS(Di, i, εcommute)

CREATE BINS:
dpmedian← ExpoMedian(Di,

εcommute
2

)
synthdata← GenExpoSynthData(dpmedian)
bins← FindPercentiles(synthdata)

CREATE NOISY HISTOGRAM:
for j ← 1 to numbins

do
{
CDF[i, j]← CountCommute(binsj , i)+
Lap(0, 2·2

εcommute
).

CDF[i]← PostProc(CDF[i])
output (CDF[i])

εcommute be the privacy budget for the commute distribution.
We allocate half of this to determine the histogram bin ranges
(because they are data dependent) and the other half to com-
pute the counts themselves. To determine the bins, we assume
that the commute distances in each grid cell are modeled by
an exponential distribution—a popular model for positively
skewed distributions such as commute distances, e.g., [1]. Let
η(x) be the (normalized) frequency of the distance x in the
dataset Di. If η(x) follows an exponential distribution with
rate parameter λ, then η(x) = λe−λx. The rate parameter
can be estimated using the median of the empirical data, by
λ̂ = median / log(2). The differentially private approximation
to the median of the commute distances in grid cell i is
called dpmedian and is computed using a computationally
efficient version of the exponential mechanism [26], as in [5].
In Alg. III.2, ExpoMedian(Di,

εcommute
2 ) implements this algo-

rithm to compute dpmedian, an
εcommute

2
-differentially private

approximation of the median of the commute distances.
Next, we determine the histogram bins by creat-

ing a large synthetic set of commute distances that
are sampled from an exponential distribution whose pa-
rameter is given by λ = dpmedian

log(2) . In Alg. III.2,
GenExpoSynthData(dpmedian) generates a set of synthetic
commute distances, synthdata, from such a distribution. We
determine the 10, 20, 30, . . . , 90, 95 percentiles of this set of
distances using FindPercentiles. The distances corresponding
to these percentiles form the edges of the histogram bins.

CountCommute(binsj , i) counts the number of
distances in the data structure Di that fall in binsj .
〈CountCommute(bins1, j), . . . ,CountCommute(bins10, i)〉
has a global sensitivity of 2. Applying the Laplace mechanism
yields an εcommute

2 -differentially private computation of the
approximate histogram counts. Since each user appears in
only one of the dc × dc grid cells, by Thms. 2 and 3 and the
privacy of the ExpoMedian [5]:

Lemma 2. Using Alg. III.2 to compute
commuteCDF(Di, i, εcommute), ∀i ∈ {1, . . . , d2c} is εcommute-
differentially private.

3) Calls per Day per User: To create the CDF of
CallsPerDay in a differentially private manner, we begin, as
in WHERE, by assuming that the average number of calls
per day for any user is from the set M = {µmin, . . . , µmax}.
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Similarly, the standard deviation of the number of calls per day
is from the set Σ = {σmin, . . . , σmax}. Just as for WHERE,
each µi and σi corresponding to a user i is rounded to the
nearest value in the sets M and Σ, respectively.

Algorithm III.3: CALLSPERDAYCDF(D, εcpday)

COUNT:
for µ← µmin to µmax

do
{

for σ ← σmin to σmax
do
{
M̂(µ, σ)← CountAvgStd(µ, σ).

NOISE ADDITION:
for µ← µmin to µmax

do


for σ ← σmin to σmax

do

{
M̂(µ, σ)← M̂(µ, σ)+
Lap(0, 2

εcpday
).

CONVERT TO CDF:
CDF← PostProc(M̂)
output (CDF)

Let CountAvgStd(µ, σ) be a function that counts the
number of users whose calls made per day have a (rounded)
mean and standard deviation of µ and σ respectively. Consider
the matrix M , of size |M| × |Σ|, whose elements corresponds
to CountAvgStd(µ, σ), for µ ∈ M and σ ∈ Σ. Any
addition or deletion of calls by a single user can change the
mean / standard deviation pair from (µ, σ) to another pair
(µ′, σ′), decreasing the count for at most one element of the
matrix M by at most 1 and increasing the count for another
element by 1. Therefore, the global sensitivity of the vector
〈M(µmin, σmin), . . .M(µmax, µmin)〉 is 2.

Alg. III.3 first counts each user’s (µ, σ). At the end of
the COUNT process in Alg. III.3, element M̂(µ, σ) contains
CountAvgStd(µ, σ), ∀µ ∈ M σ ∈ Σ. Using Thms. 1
and 3, the computation of M̂ after it goes through NOISE
ADDITION is differentially private. Next, the noisy ma-
trix M̂ is converted to a CDF by applying post-processing
techniques [13] to further reduce the noise. Fig. 3 shows
the differentially private approximation of the CDF of the
CallsPerDay distribution for different values of εcpday.

Lemma 3. Alg. III.3’s computation of M̂ and the CDF of the
CallsPerDay distribution is εcpday-differentially private.
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Algorithm III.4: DP-KMEANS(P, εbdg, εit,tol)

INITIALIZE:
ClustCtr1 ← 〈Rand〉24
ClustCtr2 ← 〈Rand〉24
εcalltime ← 0
ITERATE:
while εcalltime ≤ εbdg or err < tol

do



OldCtr← ClustCtr1
OldCtr← ClustCtr2

ClustSize1 ← ClustSize1 +Lap(0, 1
ε
)

ClustSize2 ← ClustSize2 +Lap(0, 1
ε
)

εcalltime ← εcalltime + εit

Sum1 ← Sum(Cluster1) + 〈Lap(0, 2
ε
)〉24

Sum2 ← Sum(Cluster2) + 〈Lap(0, 2
ε
)〉24

εcalltime ← εcalltime + εit

ClustCtr1 ← Sum1 /ClustSize1
ClustCtr2 ← Sum2 /ClustSize2

ClustCtr1 ← PostProc(ClustCtr1)
ClustCtr2 ← PostProc(ClustCtr2)

err = dist(OldCtr1,ClustCtr1)
+dist(OldCtr2,ClustCtr2)

output (ClustSize1,ClustSize2)
output (ClustCtr1,ClustCtr2, εcalltime)

4) Call Times per User Class: In DP-WHERE, we cluster
users into one of the two classes using differentially private
k-means clustering [25] (rather than X-means as used in
WHERE). From the CDR database D, just as in WHERE, we
compute the number of calls each user makes during each hour
of the day. From this, a 24-dimension probability vector (one
dimension for each hour) is constructed so that each element
represents the probability that a user makes calls during that
hour. We classify users based on this 24-dimension probability
vector. An intermediate data structure P that is input for
the clustering algorithm (Alg. III.4) is the set of probability
vectors pi for all users i. Each row of P consists of the id
of the user and his calling probability vector pi. The input to
Alg. III.4 consists of P , the target number k (2 in our work) of
cluster centers, the privacy budget for the clustering algorithm
εbdg, the amount of the privacy budget εit that is spent for
each iteration within the clustering algorithm, and the error
tolerance tol. Alg. III.4 will iterate until either the error is
within the range of tolerance or the privacy budget is used up.

As shown in Alg. III.4, we initialize the cluster centers
by picking two random 24-dimension probability vectors
〈Rand〉24. Vectors in P are assigned to a cluster depending
on which of the two current cluster centers they are closer to.
Over each iteration, the noisy sum of the vectors in ClustCtri
for each current cluster i is computed. The global sensitivity
of the sum of vectors in ClustSumi =

∑
j∈Clusteri

pj is 2,
because ∀j ∈ [n], ‖pj‖1 = 1 (since each of the vectors is
a probability vector). Any change in one person’s data can
change ClustSumi to another vector ClustSumi +δ, where
|δ| ≤ 2. The size of a cluster has global sensitivity 1. A
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Fig. 4: Comparison of distribution of call times for two classes of
users as determined by Alg. III.4 to the non-private clustering.

differentially private computation of the cluster size and sum
enables a differentially private approximation of the mean vec-
tor of the cluster. For each iteration, the computation of each
ClustSizei, as well of Sumi, is εit-differentially private. By
Thm. 2, this leads to a 2εit-differentially private computation
of ClustCtri. By Thm. 3, the privacy level for an iteration is
also 2εit, as the clusters are non-intersecting subsets of the
dataset P . A user—and consequently his probability vector—
appears in exactly one cluster.

At this point, ClustCtri, the noisy mean of the vectors
in Cluster i, will not necessarily correspond to a probability
vector, as some of its elements may be negative and their
sum may not add to 1. To correct for this, we apply post-
processing noise correction techniques on each of these cluster
centers before returning to the next iteration. After an iteration
where either the privacy budget is exhausted or the error
falls below the given threshold tol, the algorithm returns the
differentially private cluster centers, the total privacy budget
spent (εcalltime), and a differentially private computation of
the cluster sizes (the vector ClustSize). All of this incurs a
privacy expenditure of εcalltime.

We use the cluster centers as calling time probability distri-
butions: each element of the cluster center vectors represents
the probability that a user in that cluster makes a call during
that hour. We compute one probability distribution CallTime
for each minute of the day and for each user class by inter-
polating the probability distribution over all minutes between
the hours (elements of the cluster centers). We use ClustSize
to determine ClassProb, the probability of a user belonging
to one of the two classes. Using Thms. 2 and 3:

Lemma 4. Alg. III.4 gives an εcalltime-differentially private
clustering of the user calling probability vectors.

Fig. 4 shows that DP-WHERE preserves typical diurnal
patterns for both classes, even for low values of εcalltime.

5) Hourly Calls per Location: For every hour of the
day, DP-WHERE differentially privately computes a empirical
distribution of calls made over every grid cell. To do this,
CountCallsNum(i, j) is defined as the function that returns
the number of calls users in D make in the ith grid cell
between the hour j− 1 and j. We wish to determine a matrix
H of size d2 × 24; each row of H corresponds to a grid cell
i ∈ [d2] and each column to an hour j ∈ [24]. Element H(i, j)

of the matrix has value CountCallsNum(i, j). Let NumDays
be the number of days that the database D corresponds to.
The (column) vector corresponding to calls made over the
geographical area during hour j is written as 〈H(∗, j)〉 =
〈H(1, j) . . . H(d2, j)〉. Since any change in exactly one user’s
data can cause a change of at most MaxCallsHr for every hour
of each of these days, the global sensitivity of this vector is
MaxCallsHr ·NumDays.

Algorithm III.5: HOURLYCDFS(D, εhrlocs)

gnums← b d2

gsize
c

for j ← 1 to 24
do

for `← 1 to gnums
do

GROUP:
g` ← 0
for i← 1 to gsize

do{
g` ← g` +CountCallsNum(i, j)

NOISE ADDITION:
〈g〉 ← 〈g〉+

〈
Lap(0, MaxCallsHr ·NumDays

εhrlocs/24
)
〉gnums

RECONSTRUCT:
〈H(∗, j)〉 ← Reconstruct(〈g〉)
CDF[j]← PostProc(〈H(∗, j)〉)

output (CDFs)

Direct use of the Laplace mechanism with this level of
global sensitivity would add a lot of noise relative to the
individual counts. To reduce the overall magnitude of noise
added, we make use of grouping [20], which groups similar
counts together and allows the magnitude of the noise added
to each group count to be lower as compared to the total
group count. Specifically, we set the group size gsize to be
equal to 24 ·NumDays. This is comparable to the magnitude
of noise we will add to the resulting grouped-counts vector.
Grouping gsize contiguous elements together yields a vector
〈g〉 of size gnums = b d2

gsizec. Each element g` of 〈g〉 counts
the total number of calls made in locations that appear
in group `. Note that the global sensitivity of 〈g〉 is still
MaxCallsHr ·NumDays because any one user can make up
to a maximum of MaxCallsHr calls during a particular hour
of each of these days. We then apply the Laplace mechanism
to add noise to each group count. Finally, we replace every
individual count H(i, j) by the average of the noisy group
count it belongs to (as denoted by Reconstruct in Alg. III.5).

Alg. III.5 applies a similar grouping scheme for each hour
(1, ..., 24). By Thm. 1, each of these computations is εhrlocs

24 -
differentially private. Thus by Thm. 2:

Lemma 5. Alg. III.5 is εhrlocs-differentially private.

While this kind of grouping may not always yield highly
accurate results, in our case each of the hourly distributions is
defined on a geographical area, so we can expect call counts
within a group (corresponding to call counts in contiguous ge-
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Fig. 5: HourlyLocs Distribution for 5:00pm to 6:00pm

ographical areas) to be similar to each other for many groups.
As demonstrated by Fig. 5, showing HourlyLocs for different
values of εhrlocs/24, corresponding to an overall εhrlocs
(over all the HourlyLocs distributions) of 0.1, 0.05, and 0.01,
respectively, this method works well in our experiments.

C. DP-WHERE: Putting It All Together

The approximations to the empirical distributions computed
above are εi-differentially private for different values of εi.
DP-WHERE composes these individual differentially private
mechanisms to yield the overall algorithm. To generate syn-
thetic CDRs from these distributions, DP-WHERE performs
the same steps as WHERE to sample from each of these private
distributions to generate synthetic CDRs without going back
to the original data. Applying Thm. 2 to Lem. 1–5 yields:

Theorem 4. DP-WHERE is ε-differentially private, where

ε = εhome + εwork + εcommute + εcpday + εcalltime + εhrlocs.

It is important to note that, because none of the sampling
steps in DP-WHERE require further access to the original
data, it is possible for the data holder to release the noisy
distributions while retaining differential privacy. This would
allow others to produce their own synthetic CDR traces for any
desired number of users, time duration, or other parameters.

IV. EXPERIMENTAL EVALUATION

We have shown that DP-WHERE achieves differential pri-
vacy. Because it achieves this by injecting noise, we must also
assess the impact on utility. In this section, we explore this
impact by comparing the utility of the models produced by
DP-WHERE and by WHERE. Specifically, for multiple uses,
we demonstrate that DP-WHERE achieves similar accuracy
to WHERE using real CDRs as input, and far better accuracy
than WHERE using public data (e.g., the US Census) as input.

A. Datasets and Methodology

The input data for our DP-WHERE and WHERE experi-
ments come from a large set of CDRs generated by actual
cellphone use over 91 consecutive days from April 1 to June
30, 2011. This dataset contains over 1 billion records for both
voice calls and text messages involving over 250,000 unique
phones chosen at random from phones billed to ZIP codes
within 50 miles of the center of New York City.
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Fig. 6: EMD error for DP-WHERE using different values of ε and
a fixed commute-grid cell size of 0.01◦ × 0.01◦, as compared to
WHERE using CDRs and WHERE using public data.

In addition to the differential privacy provided by DP-
WHERE, we took several steps to preserve the privacy of
individuals represented in our input datasets throughout our
handling of those datasets. First, we used only anonymized
CDRs containing no Personally Identifying Information (PII).
Second, we did not focus our analysis on any individual phone.
Third, we present only aggregate results.

In each of our DP-WHERE and WHERE experiments, we
generate 10,000 synthetic users that travel for 30 consecutive
days in an area of more than 14,000 mi2 around New York
City, more specifically bounded by latitudes 40◦N & 42◦N
and longitudes 73◦W & 75◦W. This area is further broken
down into squares 0.001◦ on a side to construct the d×d grid
discussed in Section II-A, with d = 2,000.

B. Earth Mover’s Distance

An important goal of our modeling approach is that a
synthetic CDR trace should produce population density dis-
tributions that closely match those produced by a real CDR
trace at every time of day. We therefore need a quantitative
measure for comparing two spatial probability distributions.
Our chosen metric is Earth Mover’s Distance (EMD) [29].

EMD finds the minimum amount of energy required to
transform one probability distribution into another. If one visu-
alizes the problem as reshaping one mound of earth to match
another, this energy is given by the amount of probability to be
moved and the distance to move it. Thus, a lower EMD value
indicates a stronger similarity between two distributions. Since
different distance weightings lead to different EMD values, we
follow the method in [19] and convert a raw EMD value to
miles of error by using a normalizing factor. We obtain this
factor by calculating the EMD between two spatial probability
distributions with their entire populations concentrated in one
of two places one mile apart.

The differential privacy parameter ε gives us a knob by
which to trade privacy for accuracy. Figure 6 compares DP-
WHERE using different values of ε to WHERE using CDRs
and WHERE using public data. The size of the commute-
grid cells is held constant at 0.01◦ × 0.01◦. As shown,
WHERE using CDRs has the lowest overall EMD, but DP-
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grid cell size and a fixed ε of 0.23.

WHERE performs favorably across a range of ε values, always
performing better than WHERE using public data. As ε is
made smaller to achieve better privacy, more noise is added
and the EMD creeps upward. Accuracy is better in some times
of day than in others. In particular, fewer people make calls
in hours before 8 or after 22, so there is a smaller sample of
locations in the input CDRs and adding noise has more of an
impact during those hours.

The accuracy of DP-WHERE also depends on the gran-
ularities of the grids used to divide the geographic region
of interest. Figure 7 compares DP-WHERE using different
commute-grid sizes for the same ε of 0.23. At this ε value,
coarser commute grids provide less accurate EMD results.

commute-grid cell size
0.01◦ 0.025◦ 0.05◦

WHERE 3.2150 3.3396 3.0871
ε = 0.33 3.5316 3.1655 4.5687
ε = 0.23 3.4066 4.5577 5.1691
ε = 0.13 5.3391 5.3194 5.2754

TABLE I: Average EMD error for WHERE using CDRs and DP-
WHERE using various ε, as the commute-grid cell size changes.

We ran a wide range of experiments to explore the effects
of ε and commute-grid cell size. Table I summarizes the EMD
error averaged over the 24 hours of the day for each choice
of ε and cell size. Across all our experiments, the EMD error
for DP-WHERE differ by only 0.17–2.2 miles from those of
WHERE using CDRs as input. Although EMD errors of 3
miles may appear large, note that EMD is aggregated over
the entire area (i.e., over more than 14,000 square miles)
and WHERE has already been validated to work with similar
EMD [19]. As we further demonstrate in the following section
with daily range, differential privacy can be achieved for
a modest reduction in accuracy that still allows for useful
mobility studies.

C. Daily Range

Daily range, or the maximum distance between any two
points a person visits in a day, has proven useful for charac-
terizing human mobility patterns [17, 18, 21]. We can therefore
demonstrate the value of our modeling techniques by showing
that the daily range computed from DP-WHERE’s synthetic
CDRs closely match those computed from real CDRs.
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Fig. 8: Daily range for DP-WHERE (ε = 0.23, commute-grid size
= 0.01◦ × 0.01◦), WHERE from CDRs, and the real CDR dataset.

Figure 8 demonstrates the utility of DP-WHERE for daily
range experiments. We compare daily ranges produced by DP-
WHERE, WHERE from CDRs, and the original CDRs. We use
boxplots to summarize the resulting empirical distributions,
where the box represents the 25th, 50th, and 75th percentiles,
while the whiskers indicate the 2nd and 98th percentiles.
The horizontal axis shows miles on a logarithmic scale.
Like WHERE, DP-WHERE exhibits daily ranges that are
qualitatively similar to those from real CDRs, with differences
of 0.5–1.3 miles across the middle two quartiles.

EMD and daily range serve as important and comple-
mentary metrics for validating our synthetic models. EMD
measures the aggregate behavior of synthetic users, while daily
range yields results at a per-user granularity. In summary,
our EMD and daily range results confirm that DP-WHERE
produces synthetic CDRs that closely mimic the behavior of
large populations of real cellphone users.

V. RELATED WORK

Mobility Modeling: Characterizing human mobility based
on cellular network or other position data has received consid-
erable attention. Our prior work developed algorithms for esti-
mating people’s daily range of travel [17, 18] and for inferring
important locations in people’s lives [16] from anonymized
cellular network data. We further used this information to
characterize commute distances, to quantify carbon footprints,
and to create WHERE models [16, 19].

Early mobility modeling work used either handheld GPSs
or WiFi associations to model human mobility at much finer
scales, and with little privacy [15, 21, 28]. Prior uses of cellular
data also include some mobility modeling [9, 10, 12, 30], but
with little attention to privacy assurances. Such studies use at
most anonymization and aggregation, and in some cases point
to data characteristics that increase the difficulty of creating
privacy-preserving mobility models.

Privacy: To our knowledge, the problem of creating dif-
ferentially private human mobility models based on real-
world cellular network data has not been studied previously.
Differential privacy has been examined in other contexts of
spatio-temporal data. Chen et al. [3] study the problem of
publishing a differentially private version of the trajectory data
of commuters in Montreal. They then evaluate the utility of
published private data in terms of count queries and frequent
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sequential pattern mining. Similarly, [6] recently characterized
sequences of movements from individual users and found
them extremely resistant to privacy techniques. In contrast,
WHERE does not directly model the sequentiality of the
spatio-temporal data at the level of an individual. Some
work [14, 27] considers aspects of differential privacy on
spatial data, but without DP-WHERE’s end-to-end treatment.
Other characterization work also exists. Several recent papers
have characterized the privacy risks of releasing location data,
in each case demonstrating the ability to re-identify individual
information from geospatial data sets [11, 23, 31]. These
papers motivated us to look beyond a simple anonymization
of location traces. In addition, Andrés et al. [2] introduce the
notion of geo-indistinguishability in location-based systems,
which protects the exact location of a user while allowing
release of information needed to gain access to a service.

VI. CONCLUSIONS AND FUTURE WORK

DP-WHERE provides differential privacy while maintaining
the utility of WHERE for modeling human mobility from real-
world cellular network data. Our work shows it is possible to
balance privacy and utility in practical big data applications.

Extensions to DP-WHERE could further improve its already
strong accuracy. In particular, we note that the phones used in
this study were sampled from a much larger set of millions
of phones in each metropolitan area of interest. In our case,
independent random samples were drawn from phones billed
to each ZIP code in a metropolitan area. If we instead sample
uniformly over all phones in a metropolitan area, we can
improve the overall privacy guarantees of our algorithm, as
noted by Cormode et. al [4]. For example, sampling 5% of
phones from a database of millions of phones and running our
DP-WHERE algorithm over the calls these phones generate
would yield an order of magnitude improvement in the privacy
parameter ε. Conversely, this sampling could be used to
achieve a given ε with much less noise addition.

We hope that DP-WHERE constitutes a significant step
towards enabling cellular telephony providers to unlock the
value of their location data for applications with broad societal
benefits, such as urban planning and epidemiology, without
compromising privacy.
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