
COMMUNICATIONS
OF THE ACMcacm.acm.org� 01/2013 VOL.56 NO.1

Association for  
Computing Machinery

Human Mobility 
Characterization  

from Cellular  
Network Data

What College Could Be Like

Who Begat Computing? 

Computer Security  
and the Modern Home

ACM’s FY12 Annual Report

What’s a Robot?



74    communications of the acm    |   january 2013  |   vol.  56  |   no.  1

contributed articles

I
l

l
u

s
t

r
a

t
io


n

 b
y

 A
l

ici



a

 K
u

b
i

s
t

a
 /

 A
n

d
ri


j

 Bor



y

s
 A

s
s

oci



a

t
e

s

An improved understanding  of human-mobility 
patterns would yield insight into a variety of important 
societal issues. For example, evaluating the effect 
of human travel on the environment depends on 
knowing how large populations move about in their 
daily lives. Likewise, understanding the spread of a 
disease requires a clear picture of how humans move 
and interact. Other examples abound in such fields as 
urban planning, where knowing how people come and 
go can help determine where to deploy infrastructure 
and how to reduce traffic congestion. 

Human-mobility researchers traditionally rely on 
expensive data-collection methods (such as surveys 
and direct observation) to glimpse the way people 
move about. This cost typically results in infrequent 
data collection or small sample sizes; for example, 

the U.S. national census produces a 
wealth of information on where hun-
dreds of millions of people live and 
work but is carried out only once every 
10 years.

In contrast, data from cellular 
telephone networks can help study 
human mobility cheaply, frequent-
ly, and on a global scale. Billions 
of people worldwide keep a phone 
near them most of the time. Since 
cellular networks need to know the 
approximate location of all active 
phones to provide them voice and 
data services, location information 
from these networks holds the po-
tential to revolutionize the study of 
human mobility. 

We have analyzed billions of ano-
nymized Call Detail Records (CDRs) 
from a cellular network to character-
ize the mobility patterns of hundreds 
of thousands of people. CDRs are 
routinely collected by wireless-ser-
vice providers for billing and to help 
operate their networks by, say, identi-
fying congested cells in need of more 
resources. Each CDR contains infor-
mation (such as the time a phone 
placed a voice call or received a text 
message, as well as the identity of 
the cellular antenna with which the 
phone was associated at the time). 
When joined with information about 
the locations and directions of these 
antennas, CDRs can serve as sporadic 
samples of the approximate locations 
of the associated phones’ owners. 

Human Mobility 
Characterization 
from Cellular 
Network Data 

doi:10.1145/2398356.2398375

Anonymous location data from cellular  
phone networks sheds light on how people 
move around on a large scale.

By Richard Becker, Ramón Cáceres, Karrie Hanson, 
Sibren Isaacman, Ji Meng Loh, Margaret Martonosi, 
James Rowland, Simon Urbanek, Alexander Varshavsky, 
and Chris Volinsky

 key insights

 � �Cellular telephone networks enable  
the study of human mobility at low cost  
and on an unprecedented scale.

 � �Results from such studies have broad 
applicability in mobile computing, urban 
planning, ecology, and epidemiology. 

 � �We have developed and validated techniques  
for analyzing billions of anonymous  
location samples to determine the daily 
range of travel, carbon footprint of  
home-to-work commutes, and other 
mobility characteristics of hundreds 
of thousands of people living in the Los 
Angeles, San Francisco, and New York 
metropolitan areas. 
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CDRs are an attractive source of 
location information for three main 
reasons: They are collected for all ac-
tive cellular phones, numbering in 
the hundreds of millions in the U.S. 
and billions worldwide; they are al-
ready being collected to help operate 
the networks, so additional uses incur 
little marginal cost; and they are con-
tinuously collected as each voice call 
and text message completes, enabling 
timely analysis. 

At the same time, CDRs have two 
significant limitations: They are sparse 
in time because they are generated 
only when a phone engages in a voice 
call or text-message exchange; and they 
are coarse in space because they record 
location only at the granularity of a cel-
lular antenna. Not obvious a priori is 
whether CDRs provide enough infor-
mation to characterize human mobil-
ity in a useful way. 

Since 2009, we have pursued a re-
search program aimed at developing 
sound analysis techniques for explor-
ing aspects of human mobility using 
CDRs and shown that CDRs are indeed 
useful for accurately characterizing im-
portant aspects of human mobility. Our 
results to date include the following: 

Daily travel. We have determined 
how far anonymous populations of 
hundreds of thousands of people travel 
every day in the Los Angeles, San Fran-
cisco, and New York metropolitan areas; 

Carbon emissions. We have calcu-
lated the carbon emissions due to the 
home-to-work commutes of these pop-
ulations, accounting for differences in 
distance and modes of travel; 

Number of workers and event goers. 
We have identified which residential 
areas contribute what relative number 
of workers and holiday parade attend-
ees at a suburban city—Morristown, 
NJ; and 

Traffic volumes. We have estimated 
relative traffic volumes on the main 
commuting routes into Morristown. 

We validated our results by compar-
ing them against ground truth provid-
ed by volunteers and against indepen-
dent sources (such as the U.S. Census 
Bureau). Throughout our work, we 
have taken measures to preserve indi-
vidual privacy. The rest of this article 
covers the methodologies and findings 
of our human-mobility studies based 
on cellular network data. 

Figure 1. Median daily range of cellphone users living in central LA, SF, and NY (darker  
yellow areas). 

(a)

(b)

(c)

The radii of the inner, middle, and outer circles represent the 25th, 50th, and 75th percentiles of these 
ranges across all users in that area. All maps are drawn to the same scale.  
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Privacy and Terminology 
Though CDRs are a valuable source 
of data for mobility studies that could 
benefit society at large, cellular cus-
tomers rightfully have the expectation 
that their individual privacy will be pre-
served. We take several active steps to 
protect privacy: 

Anonymization. All our CDRs are an-
onymized by someone not involved in 
the data analysis; each cellular phone 
number is replaced with an identifier 
consisting of a unique integer; 

Minimal information. We use only 
the minimal information needed for 
our studies. Our simplified CDRs con-
sist of the anonymous phone identi-
fier, date, and time of a voice call or 
text message; the elapsed time of a call 
(zero for a text message); the cellular 
antennas involved in the event; and the 
phone’s billing ZIP code. Our data does 
not include demographic information 
for the subscriber or any information 
about the other party in the communi-
cation. In some of our studies we use 
the billing ZIP code as a rough esti-
mate of the phone owner’s home loca-
tion. We excluded business subscrib-
ers from all our datasets because those 
billing ZIP codes generally do not cor-
respond to home locations; and 

Aggregate results. We present only 
aggregate results and do not focus our 
analysis on individual phones, aside 
from those of a group of volunteers 
who gave us permission to look at 
their records. 

In addition to these active steps, the 
nature of CDRs is to give only tempo-
rally sparse and spatially coarse infor-
mation about a phone. A CDR is gener-
ated only when the phone is used for a 
call or text message; the phone is invis-
ible to us at all other times. We know 
only the location of the phone in an ap-
proximate way, based on the antennas 
involved with the call. Because an an-
tenna often covers an area greater than 
one square mile, our spatial resolution 
is limited. 

A brief note on terminology sur-
rounding cellular network equipment 
will help in understanding the rest of 
the article. We refer to a cell tower as 
the location of equipment placed on 
a freestanding tower, atop a building, 
or on some other physical structure. 
In general, each tower hosts multiple 
antennas, each handling a particular 

radio technology and frequency (such 
as Universal Mobile Telecommunica-
tions System at 850 MHz) and pointing 
in a specific compass direction (such 
as north). All antennas pointing in the 
same direction from the same tower 
cover what we call a sector. 

Daily Range of Travel 
How far do people travel every day? We 
can approximate this quantity by find-
ing the maximum distance between 
any two cell towers a phone contacts in 
one day, calling this distance the daily 
range. Here, we present some of our 
findings regarding the daily range of 
people living in three major metropoli-
tan areas in the U.S.: Los Angeles (LA), 
San Francisco (SF), and New York (NY). 

We gathered anonymous location 
data for cellular phones whose owners 
live in the metropolitan regions of in-
terest. We identified ZIP codes within 
a 50-mile radius of the LA, SF, and NY 
city centers, corresponding to the col-
ored regions in Figure 2. We obtained 
anonymized CDRs for a random sam-
ple of phones with billing addresses in 
those ZIP codes. And, so as to exclude 
people not living near their billing ad-
dress, we removed all CDRs for phones 
that appeared in their base ZIP code 
fewer than half the days they had voice 
or text activity. 

The table here describes our most 
recent dataset for each region, with 
each dataset containing hundreds of 
millions of location samples for hun-
dreds of thousands of phones over 
three months of activity, with 12–18 
median location samples per day for 
each phone. 

We compared our sets of phones 
against U.S. Census data24 and con-
firmed the number of sampled phones 
in each ZIP code is proportional to the 
population of that ZIP code. We there-

fore believe our datasets are represen-
tative of the populations at large in the 
regions of interest. 

We computed each phone’s daily 
range by calculating distances be-
tween all pairs of cell towers contacted 
by the phone on a given day and select-
ing the maximum distance between 
any two such towers. To validate our 
methodology, we recruited volunteers 
who logged their actual locations for 
one month and gave us permission to 
inspect their CDRs for the same pe-
riod. The median difference between 
daily ranges computed from CDRs and 
those derived from the ground-truth 
logs was less than 1.5 miles, giving us 
confidence in our range-of-travel re-
sults; for more, see Isaacman et al.13 

The study of daily ranges yields 
numerous insights about human mo-
bility. For example, the median of a 
phone’s daily range values over the du-
ration of a dataset is an approximation 
of the most common daily distance 
traveled by the phone’s owner. Similar-
ly, the maximum daily range across a 
dataset corresponds to the longest trip 
taken during that time. 

Figure 1 is a visual representation of 
the median daily ranges for residents 
of central LA, SF, and NY; the darker 
yellow areas correspond to ZIP codes in 
the City of Los Angeles, the City of San 
Francisco, and the Borough of Manhat-
tan. These areas do not include the sur-
rounding communities also represent-
ed in our complete metropolitan-area 
datasets. The radii of the red circles are 
proportional to the median daily rang-
es for residents of the corresponding 
shaded areas. As shown, people living 
in the city of Los Angeles travel longer 
distances on a typical day than people 
living in the city of San Francisco, who 
in turn travel longer distances than 
people living in Manhattan. 

Characteristics of CDR datasets for the LA, SF, and NY metropolitan areas, with each  
dataset spanning 91 consecutive days, April 1 to June 30, 2011. 

LA SF NY

Total unique phones 318K 241K 267K 

Total unique CDRs 1395M 701M 1095M 

Median CDRs per phone per day 18 12 18 

Median calls per phone per day 6 5 7 

Median texts per phone per day 6 3 5 
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By analyzing similar datasets from 
different time periods, we made ad-
ditional spatial and temporal com-
parisons between the daily ranges of 
various populations. For example, 
people throughout the LA region travel 
farther on a typical day than people 
throughout the NY area. In contrast, 
the longest trips taken by residents 
of Manhattan are much longer than 
those taken by residents of central Los 
Angeles. Furthermore, people in both 
the LA and NY regions tend to travel 
shorter distances in the winter months 
than in the summer months, with the 
effect being more pronounced in NY. 
For a more complete description of 
our daily range results, see Isaacman 
et al.13 and Isaacman et al.14

Carbon Footprints 
Evaluating the environmental impact 
of human travel is of urgent interest to 
society at large. A person’s commute 
between home and work can account 
for a significant portion of his or her 
overall carbon footprint. We can es-
timate the carbon emissions due to 
these commutes by combining our 
datasets of cellphone locations with a 
U.S. Census dataset on mode of trans-
port to work (such as automobile, bus, 
and train)24 and a table of carbon emis-
sions by mode of transport.4 

We devised an algorithm that uses 
CDRs to identify important places in 
people’s lives, defined as places a per-
son visits frequently or spends a lot of 
time. We further identified the likely 
home and work locations from among 
these important places, then calculated 
the home-to-work commute distance. 
Our approach, described in more detail 
and validated in Isaacman et al.,12 uses a 
series of clustering and regression steps 
to accomplish these tasks. We found 
our commute-distance estimates were 
within one mile of the ground-truth dis-
tances provided by volunteers. 

We then applied this approach to 
our large CDR datasets for the LA, SF, 
and NY metropolitan areas described 
earlier and computed the distribution 
of commute distances across the popu-
lation of each ZIP code in our regions 
of interest. We found that our esti-
mates were within one mile of the aver-
age commute distances for these same 
regions as published by the U.S. Bureau 
of Transportation Statistics.23 

Figure 2. Median carbon emissions per home-to-work commute of cellphone users living in 
the LA, SF, and NY metropolitan areas. 

(a)

(b)

(c)

Greener ZIP codes denote smaller carbon footprints, ranging through yellow, orange, red, and purple as 
footprints grow. All these maps use the same geographic and carbon scales; emissions are scaled linearly. 
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Finally, we joined our distributions 
of commute distances with the pub-
licly available distributions of modes 
of transport per ZIP code and of car-
bon emissions per mode of transport 
per passenger. Figure 2 shows our re-
sults in the form of heat maps, where 
color corresponds to the median car-
bon emission per commute across the 
people in each ZIP code. Colors are or-
dered so greener ZIP codes correspond 
to lower carbon emissions, with yel-
low, orange, red, and purple ZIP codes 
showing increasing emissions. 

In the NY area, increasing distance 
from Manhattan correlates with an in-
creasing carbon footprint; in contrast, 
LA is more uniform throughout, except 
for parts of Antelope Valley (northeast 
portion of the map) separated from 
downtown LA by a mountain range 
drivers must go around. The results for 
SF are between those for NY and LA. 

These patterns match well with gen-
erally understood movement patterns 
in each city. Popular knowledge indi-
cates that in NY, a great many people 
commute into Manhattan, while in 
LA, there is no single concentration of 
jobs. SF has at least two major job cen-
ters, one focused in the city of San Fran-
cisco proper, another in Silicon Valley 
approximately 40 miles to the south. 
Thus, unlike NY, SF has more than one 
strong jobs focus, but unlike LA, it has 
some clear areas of jobs focus. 

Beyond identifying patterns of car-
bon emissions, we also compared raw 
carbon values. For instance, though 
difficult to see in Figure 2, Manhattan 
ZIP codes have the smallest carbon 
footprints of all ZIP codes studied, 
presumably due to the nearness to 
work of many people’s homes, as well 
as to an extensive public transporta-
tion infrastructure. 

Laborshed and Paradeshed 
City and transportation planners are 
interested in knowing the home loca-
tions of people who work in and visit 
their city. The information is useful 
in, say, forecasting road-traffic vol-
ume during morning and evening rush 
hours. The set of residential areas that 
contribute workers to a city is known as 
the city’s laborshed. 

To study an example laborshed, we 
captured all transactions carried by the 
35 cell towers located within five miles 

of the center of Morristown, NJ, a sub-
urban city with approximately 20,000 
residents. These 35 towers house ap-
proximately 300 antennas pointed in 
various directions and supporting vari-
ous radio technologies and frequen-
cies. Our goal was to capture cellular 
traffic in and around the town. Choos-
ing the five-mile radius allowed us to 
cover both Morristown proper and its 
neighboring areas. We obtained ano-
nymized CDRs for 60 consecutive days, 
March 1 to April 29, 2011, thus collect-
ing more than 17 million voice CDRs 
and 39 million text CDRs for more than 
472,000 unique phones. 

We identified Morristown’s labor-
shed from the CDRs as follows: We 
classified as Morristown workers those 
cellphone users with significant activ-
ity inside Morristown during business 
hours (9 a.m. to 5 p.m., Monday to Fri-
day). We then used billing ZIP codes to 
identify their places of residence. This 
method produced counts of Morris-
town workers by residential ZIP code. 

We validated our results by compar-
ing them with data from the 2000 U.S. 
Census, confirming that the number 
of workers we attributed to each ZIP 
code was strongly correlated with the 
number of workers in the same ZIP 

code as published in the “Journey to 
Work” tables of the 2000 U.S. Census 
Transportation Planning Package.24 
Our analysis and validation method-
ology are described in more detail in 
Becker et al.2 

Figure 3 is a geographic representa-
tion of Morristown’s laborshed, with 
darker colors indicating the home ar-
eas of larger numbers of Morristown 
workers. Interestingly, there seem to 
be many more workers coming from 
the area immediately north of Morris-
town than from the south. These two 
areas have similar population densi-
ties, so the difference may be related 
to geography, demographics, or trans-
portation infrastructure. Furthermore, 
though population density increases 
dramatically to the east (as one gets 
closer to Manhattan), we see almost as 
many workers coming from the west, 
perhaps because Morristown is a re-
gional center of commerce. However, 
there do seem to be workers making 
long “reverse commutes” from areas 
of New Jersey close to Manhattan. All 
these facts could be useful to policy-
makers deciding on future municipal 
and regional mass-transit investments. 

Our methodology allows us to es-
timate the flow of people in and out 

Figure 3. Laborshed of Morristown, NJ; the red dot denotes the city center. 

Contour lines divide regions of different concentrations of workers’ homes, with workers identified as 
those who use their cellphones in Morristown during weekday business hours. Most workers are from 
nearby areas, but some are from as far as 40 miles away in Manhattan. 
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own experiments to determine how 
motion was reflected in CDRs. We ig-
nored text CDRs because text messages 
involve only a single location. Second, 
since we were interested in routes to 
and from the center of town, we used 
only CDRs with antenna sequences 
that began or ended at the tower han-
dling calls for the core downtown area. 
After filtering, we were still left with 
tens of thousands of CDRs. 

We began by identifying 15 com-
mon commuting routes (13 driving 
routes and two train routes) radiating 
from the town center. We obtained 
ground-truth data for them by driving/
riding each one four times (two in each 
direction), using at least two phones 
calling each other on each drive/ride. 
We obtained the CDRs for these calls 
to both train and test our algorithms. 
From our training data, we determined 
a reference pattern of cellular sectors 
used by calls on each of the routes. We 
intentionally included some routes 
very close to one another and others 
that partially overlap, as routes do in 
real life. Some of our reference pat-
terns were thus quite similar, making 
disambiguation a challenge. 

We then developed two methods 
for assigning CDRs to routes: One 
uses a distance metric to assign a test 
CDR to the route with the closest ref-
erence pattern. We used a variant of 
Earth Mover’s Distance (EMD), a mea-
sure of the difference between two 
arbitrary probability distributions, as 
a metric that takes into account com-
mon subsets of sectors, the particular 
sequence of sectors, how long the call 
is associated with each sector, and 
tower locations. The other method 
uses as reference data the radio-fre-
quency scans routinely performed by 
cellular network operators to measure 
network coverage. The scanner data 
contains signal-strength measure-
ments stamped with global-position-
ing system (GPS) locations from all ob-
servable antennas along major driving 
routes. Our classification algorithm 
estimates the likelihood of a given se-
quence of antennas being seen on a 
particular route and selects the most 
likely route. This approach has the 
advantage of being able to reuse data 
that is already available, without re-
quiring additional data collection on 
every target route. It could easily be ex-

of a geographic area during arbitrary 
time periods. Of particular interest to 
city officials is how the mix of inhabit-
ants changes during special occasions 
(such as extreme weather, construc-
tion projects, and regional events). 
Knowing where people come from can 
help them in advertising for the event 
and easing traffic congestion. 

One such occasion in Morristown 
was the St. Patrick’s Day Parade on 
Saturday March 12, 2011, from 11 a.m. 
to 3 p.m. We repeated our analysis for 
obtaining the laborshed but on cell-
phone transactions handled during 
the time of the parade by the anten-
nas pointing along the parade route. 
Figure 4 is the resulting paradeshed, 
with people coming for the parade, 
compared with data for the same an-
tennas and time interval on a typical 
Saturday without special events. The 
parade is a county affair, so we would 
have expected the event to draw 
widely from other parts of the county 
(north and west of Morristown). In-
deed, we see the areas north and west 
of Morristown showing large increas-
es, while other areas south and east 
show smaller increases. Prior to the 

advent of cellular networks, it was no-
tably difficult for local officials to ob-
tain this information except through 
expensive surveys. 

Traffic Volume 
The quality of life in any urban area is 
directly influenced by the frustration, 
pollution, time lost, and noise of traf-
fic congestion. Efforts by planners to 
improve traffic flow while not sacrific-
ing street life need a thorough under-
standing of existing traffic conditions. 
Since traditional methods of obtaining 
traffic data are expensive, we set out to 
determine whether we could estimate 
traffic volumes from CDRs. 

To explore traffic volume on major 
commuting routes into Morristown, 
we used the same data-collection pro-
cedure we used to calculate the labor-
shed, as described earlier. However, in 
this case we recorded activity in and 
around Morristown from December 
2009 to January 2010. We used two fil-
ters to obtain an appropriate subset of 
CDRs for the study: First, to retain data 
about moving vehicles, we used only 
voice CDRs including antennas on at 
least five towers, as indicated by our 

 Figure 4. Paradeshed of Morristown, NJ; the red dot denotes the city center. 

●

New York

New Jersey

1
3

6

10

Five times as many people were in Morristown for the St. Patrick’s Day Parade as on a normal Saturday. 
To show the geographical distribution of parade attendees’ homes, we mapped the number of people  
coming from each surrounding ZIP code. Green-yellow areas contributed more than the parade-day  
average and purple-red areas less than that average. Communities contributing near the average  
are not colored to highlight the outliers.
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tended to larger-scale studies in other 
urban areas. 

Both classification algorithms 
achieved approximately 90% accuracy 
on our test data, outperforming sev-
eral other algorithms based purely on 
common subsets of towers, sectors, 
or antennas. Our route-classification 
algorithms and their accuracy are de-
scribed in more detail in Becker et al.1 

Figure 5 shows the result of our 
route assignment to moving phones in 
the Morristown area, using the EMD-
based algorithm applied to CDRs; the 
signal-strength-based method yields 
similar results. The widths of the 
lines superimposed on each route are 
proportional to the estimated traffic 
volumes on each route. The two wide 
black lines running roughly north and 
south correspond to the interstate 
highway that passes through Morris-
town. The counts shown at the begin-
ning of each route are normalized to 
1,000 moving phones. We compared 
our relative traffic volumes to traffic 
counts published by the New Jersey 
Department of Transportation17 and 
found a correlation coefficient of 0.77, 
giving us added confidence in the accu-
racy of our approach. 

Related Work 
The research community increasingly 
uses cellular network data to study hu-
man mobility, applying its findings 
to various domains, including urban 
planning,19 mobility modeling,10 so-
cial-relation inference,11 and health 
care.3 Here, we survey a subset of that 
work most similar to our own. 

Several efforts have explored how 
cellular network data can be used for 
urban planning. In studies of Milan, 
Italy, Ratti et al.19 and later Pulselli 
et al.18 demonstrated it is possible to 
characterize the intensity and spatio-
temporal evolution of urban activi-
ties using call volume at cell towers. 
Reades et al.20 studied call-volume ac-
tivity in six distinct locations in Rome, 
Italy, showing that volume varied dras-
tically between the studied locations 
and between weekdays and weekends. 
Girardin et al.8 used tagged photo-
graphs from Flickr in combination 
with call-volume data to determine 
the whereabouts of locals and tourists 
in Rome. They later repeated the study 
with only call-volume data to exam-

ine differences in behavior between 
tourists and locals in New York City.9 
Calabrese et al.6 studied where people 
came from to attend special events in 
Boston, finding that people who live 
close to an event are more likely to at-
tend it and that events of the same type 
attract people from roughly the same 
home locations. Though we have also 
studied how cellular network data can 
be used for urban planning, we pur-
sued different research goals (such as 
calculating daily ranges, deriving and 
validating laborsheds, and estimating 
traffic volume). 

In the domain of mobility model-
ing, Gonzalez et al.10 used cellular net-
work data from an unnamed European 
country to form statistical models of 
how individuals move, finding human 
trajectories reflect a high degree of spa-
tial and temporal regularity, with each 
individual having a time-independent 
characteristic travel distance and re-
turning often to a few characteristic 
locations. Song et al.21 analyzed similar 
data to study the predictability of an in-
dividual’s movements, finding a high 
degree of predictability across a large 
user base largely independent of travel 

distances and other factors. Whereas 
these efforts modeled individuals, we 
focused on mobility differences be-
tween large populations in distinct 
geographic regions. 

A complementary approach to col-
lecting human-mobility data from cel-
lular networks is to collect it directly 
from cellular phones themselves. For 
example, as in our route-classifica-
tion work, CTrack22 maps a phone’s 
route by matching the cellular-signal-
strength fingerprints seen by a phone 
against a database of such finger-
prints. More generally, there is a grow-
ing body of work in participatory sens-
ing that uses cellphones as sensors 
of location and other contexts.5,7,16 
Cellphone-based efforts have some at-
tractive properties, most notably that 
they often have access to more varied 
and finer-grain sources of location in-
formation (such as GPS readings and 
Wi-Fi fingerprints) than the cellular 
antenna identities in our CDRs. 

However, our network-based ap-
proach maintains important advan-
tages: In particular, the cellphone-
based approach typically requires 
the installation and running of spe-

Figure 5. Relative traffic volume on 12 commuting routes to the center of Morristown, NJ, as  
assigned by our route-classification algorithms. 
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Line widths are proportional to the estimated volumes; counts shown at the beginning of each route are 
normalized to 1,000 moving cellphones. 
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cial software on phones, consuming 
power on the devices and generally 
inhibiting truly large-scale data col-
lection. In contrast, we use informa-
tion already collected by the network 
for all phones and does not require 
additional software or consume extra 
power on mobile devices. As a result, 
our work has involved orders of mag-
nitude more subjects than participa-
tory-sensing efforts to date. 

Conclusion 
Our goal with this work has been to 
make a case for the value of cellular 
network data to support a range of re-
search and policy goals related to hu-
man mobility. Through several studies 
since 2009, we have demonstrated how 
CDRs—despite their temporal sparse-
ness and spatial coarseness—offer im-
portant insights into the movement pat-
terns of individuals and communities. 

To demonstrate the broad utility of 
CDR data, our work comprises several 
types of analyses: In one case, we dem-
onstrated techniques for identifying 
important places in people’s lives from 
CDR traces. Coupling them with other 
data (such as U.S. Census data on trans-
portation use) we are able to generate 
estimates of home-to-work carbon 
footprints in a manner that can be up-
dated much more frequently than typi-
cal census surveys, which are expen-
sive and therefore infrequent. We also 
showed the use of CDR-based analysis 
to map laborshed statistics, helping 
predict how special events (such as a 
holiday parade) might influence com-
mute and travel patterns. 

These studies point to the great val-
ue of cellular network data for future 
urban-planning applications (such 
as traffic-congestion mitigation and 
mass-transit planning). Unlike expen-
sive and infrequent census approach-
es, the fact that CDR-based mobility 
data can be collected in unobtrusive 
ways has the potential to make broad 
use both cheaper and easier. 

Motivating all this work is the de-
sire to glean useful statistics and mod-
els from the data without compromis-
ing the privacy of individual cellular 
telephone users. We employed various 
anonymization techniques to ensure 
privacy preservation. More broadly, 
we showed that a range of useful con-
clusions can be drawn about regional 

mobility patterns based solely on ano-
nymized, sampled, highly aggregated 
versions of the source mobility data. 

Our most recent work seeks to pro-
vide fully synthetic models that mimic 
the individual and regional mobility 
patterns seen in the measured CDRs.15 
Such models will further improve the 
ability of scientists and planners to 
perform accurate, low-cost, privacy-
preserving studies of human mobility. 
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