/usr/group CommUNIXations

21

by Ramon Caceres

he Defense Advanced Research Projects

Agency (DARPA) family of standard proto-

cols includes a virtual terminal protocol
(TELNET), the File Transfer Protocol (FTP), the
Simple Mail Transfer Protocol (SMTP), the Trans-
mission Control Protocol (TCP) and the Internet
Protocol (IP). Together they provide a comprehen-
sive set of network services over both local area and
wide area networks. As widely accepted and
machine-independent standards, they can be used
for communication among a variety of computer
equipment from many different vendors.

IP, in particular, adds important functionality
to the DARPA protocol family. As its name implies,
Internet Protocol handles addressing and routing
between separate logical and/or physical networks
(i.e., an internetwork or internet).

Crucial to this internet role is the IP address-
ing scheme. IP addresses consist of 32 bits typically
divided into two parts: the network address and the
host address. Together, the two provide the IP layer
of the hosts in an internet with all the information
necessary for routing IP packets from their origin
to their destination.

Also included in the IP specification is provi-

_sion for networks whose maximum packet size is
smaller than the maximum IP packet size. Through
the notion of a maximum transmission unit, IP
packages data from higher-level protocols into IP
packets of a size known to be acceptable to lower-
level protocols and physical networks. This is com-
monly referred to as IP fragmentation.

IP is a datagram protocol, which means that
each unit of data handled by the protocol is treated
individually. This is in contrast to stream or virtual
circuit protocols, which typically maintain a serial
relationship between subsequent units of data for
the same physical or logical destination, thereby
ensuring both reliable and properly ordered deliv-
ery. Implied in the concept of datagrams is the fact
that each datagram must by necessity contain
enough information to traverse a path from its
origin to its final destination. In addition, datagram
protocols do not usually ensure reliable or properly
ordered data delivery. Naturally, data is not pur-
posefully lost without discretion, but rather, when
conditions necessitate it (such as upon heavy net-
work congestion). However, it is important to note
that [P will allow data to be dropped and delivered
out of order.

The X.25 Protocol

The Consultative Committee for International Tele-
graph and Telephone (CCITT) X.25 and its related
protocols provide a similar set of network services
to the DARPA protocols. They too can be used for

communication among a wide variety of computer
equipment from many different vendors. These
protocols include X.25, X.28, X.29 and X.3,
among others.

X.25 provides functionality that includes
aspects of both TCP and IP. It is a reliable virtual
circuit protocol covering the physical, frame and
packet level of the International Standards Organi-
zation (ISO) Open System Interconnect (OSI)
model. In X.25 terminology, these levels are re-
ferred to as X.25 Level 1, X.25 Level 2 and X.25
Level 3, respectively.

Similar to IP, X.25 is a host-to-host protocol.
As such, X.25 maintains a host addressing scheme
obeying the CCITT X.121 standard. X.25 addresses
are variable length, encoded two digits per byte as
Binary Coded Decimals (BCD). Each address is

IP-to-X.25 Protocol
Interface Issues

Comparing two communica-
tions protocols, with discus-
sion of interface issues and
current standards approaches
for interface implementation.

SRR
Ramon
Caceresis a
software devel-
opment engi-
neer for Pyra-
mid Technology
Corporation,
1295 Charles-
ton Road,
Mountain View,
CA 94039;
(415) 965-
7200.



May/June 1987

IP-to-X.25

CONTINUED

limited to a maximum of 14 BCD digits. This limit
is enforced by a 4-bit-address-length field in packets
that explicitly contain X.25 addresses. In turn, X.25
addresses are broken up into a 4-BCD-digit Data
Network Identification Code (DNIC) and a
variable-length host address within that data net-
work, sometimes referred to as the National Termi-
nal Number (NTN).

In contrast to IP, X.25 is a virtual circuit pro-
tocol. An important fact to keep in mind regarding
virtual circuit protocols is that there is a very defi-
nite and unavoidable overhead incurred before data
can be transferred to a destination for which a vir-
tual circuit does not already exist. In short, a virtual
circuit must be explicitly established between the
source and destination entities before any higher-
level data can flow. For establishment to take place,
virtual circuit protocols usually go through an ex-
change of control information that constitutes what
is usually termed a handshake.

In X.25, the handshake includes the exchange
of a call-request packet, and either a call-accept
packet — if the called party is willing to go ahead
with the transaction — or a clear-request packet, if
the called party refuses to go ahead with the trans-
action. Until a call-request/call-accept handshake is
successfully performed, no higher-level data trans-
fer can take place over an X.25 virtual circuit. In
X.25 terminology, this process is termed establish-
ing a call.

General Design Issues
in Interfacing IP to X.25

Many general design issues need to be resolved
when the IP and X.25 protocols are interfaced.
While a number of these can be considered purely
implementation decisions, several stand out as more
general design problems — for instance, the ability
to perform packet fragmentation and reassembly,
and internetwork routing functionality.

In addition, there are two major design issues
to be resolved: IP-to-X.25 address translation and
X.25 virtual circuit management. Each is described
in more detail below.

IP-to-X.25 Address Translation

Both IP and X.25 maintain their own host-to-host
addressing schemes, as described earlier. On outgo-
ing IP packets, the interface must translate IP ad-
dresses into X.25 addresses. Similarly, on incoming
X.25 call requests, the interface must translate X.25
addresses into IP addresses. There are several ways
of performing this two-way translation.

First, the most straightforward means is for
the interface to keep a table of IP-to-X.25 address
mappings. This is very easy to build and maintain in
a general sense, but presents some practical draw-
backs. Specifically, in current UNIX systems, the IP
protocol is almost always found only in the kernel,
while the X.25 protocol is found either in the kernel
or in the hardware controller. Thus, the most logical
implementation of the IP-to-X.25 interface is a
piece of kernel software between the IP protocol
and the X.25 protocol. In order to maintain reason-
able throughput, the IP-to-X.25 address mapping
table must also be kept in the kernel where it is eas-
ily accessible to the interface. The drawback lies in
the fact that the table must be kept to a reasonable
size in order to prevent it from using too much of
non-pageable kernel memory. This effectively limits
the number of hosts that can be reached through the
interface to the number of address mappings the
system can hold in the kernel address mapping table.

An alternative to the address mapping table
approach is to use one of a number of possible two-
way mathematical mappings between the IP and
X.25 address space. The advantage of the formula
approach is that [P-to-X.25 address translation can
be performed dynamically in both directions with
negligible space consumption. If the formula and
the resulting algorithm are simple enough, the com-
putational cost could also be made to approach that
of the table lookup operation needed with the ad-
dress mapping approach, and the gain would be
substantial.

X.25 Virtual Circuit Management

Another important issue to resolve when interfacing
IP to X.25 is managing the available X.25 virtual
circuits to transmit and receive IP datagrams effec-
tively. Central to this issue is the fact that IP is a
datagram protocol, while X.25 is a virtual circuit
protocol.

Following the nature of datagram protocols,
IP will hand the interface a series of outgoing pack-
ets that will have no explicit or implied locality of
reference with respect to destination hosts. In prac-
tice, such locality of reference may very well take
place and in fact be a common occurrence, but
nevertheless, the interface must be prepared to han-
dle outgoing datagrams for any destination at any
time. The interface cannot assume that any se-
quence of outgoing IP datagrams is destined for
any one host or, in fact, for any particular subset of
all the hosts in the network.

At the same time, X.25 provides only a limited
number of virtual circuits over which to send such
datagrams. The number of X.25 virtual circuits
available to a host is further limited by the X.25
protocol implementations on both the host and



/usr/group CommUNIXations

23

network sides of the X.25 connection. This number
of real simultaneous X.25 virtual circuits typically
ranges from 32 to 128 — certainly smaller than the
number of hosts in a large internet and much
smaller than the number of hosts addressable by IP
and X.25.

Given the fact that X.25 virtual circuits must
be explicitly established to a particular host before
any data can be sent to that host (a non-trivial oper-
ation in time and in some cases money), X.25 vir-
tual circuits must be considered a very scarce re-
source in the context of an IP-to-X.25 interface. It
follows that effectively managing this resource
plays a crucial role in the behavior of the interface.

The problem of managing a scarce resource to
satisfy a much greater or theoretically infinite de-
mand is common to many aspects of operating
system design. It is then reasonable to attempt to
draw from past experience in other areas to solve
the specific case of X.25 virtual circuits and IP da-
tagrams. In particular, this problem is in many ways
similar to that of managing a limited amount of real
memory to satisfy a much larger demand for virtual
memory. It can be expected that some of the more
successful schemes for virtual memory management
~ would also work well here. Describing the many
virtual memory schemes that have been developed is
outside the scope of this article, but suffice it to say
that schemes such as preemptive Least Recently
Used (LRU) algorithms and the working set concept
apply very well to X.25 virtual circuit management
in an [P-to-X.25 interface.

Aside from the consideration of which al-
gorithm to use to schedule the number of available
X.25 virtual circuits among the number of destina-
tion hosts referenced to IP, a related decision is how
many X.25 virtual circuits to open per destination
host. Because an unavoidable delay is incurred
between the time one particular X.25 virtual circuit
accepts a packet for output and the time it can ac-
cept another one, it is logical to assume that open-
ing more than one virtual circuit per destination
host will help improve throughput. In particular,
the diminutive window sizes used by X.25 networks
to ensure reliable transmission tend to prevent a
single virtual circuit from approaching data rates
anywhere close to the X.25 line speed.

Specifying Networking Standards

There are a number of other, more specific choices
that must be addressed when interfacing the IP and
X.25 protocols. The freedom in many of these areas

is such that different IP-to-X.25 interfaces must
agree exactly on many issues if they are to commu-
nicate.

For this reason, as is true with the protocols
they serve to join, standards are necessary for dif-
ferent implementations of IP-to-X.25 interfaces to
interact in a reasonable fashion. Two such stan-
dards have developed for two different types of
X.25 networks — one for the X.25 portion of the
Defense Data Network (DDN) and the other for
X.25 Public Data Networks (PDNs). They agree in
many areas, but differ in their approach to some of
the general design issues described earlier. They also
differ in their support of several features specific to
either the DDN or particular PDNs.

The DDN Approach

The Defense Communications Agency (DCA) has
decreed that all new host connections to the DDN
be made with X.25, and not with the more tradi-
tional 1822 ARPANET protocol. Indeed, X.25 is
slated to completely substitute 1822 ARPANET in
the DDN. Furthermore, if a host wants to interact
with other DDN hosts using the full functionality
available in the DDN, then it must include an IP-to-
X.25 interface.

To aid in this purpose, the DCA has published
a definitive standards document, the DDN X.25
Host Interface Specification. This specification
dramatically narrows the number of implementa-
tion decisions faced by developers of IP-to-X.25
interfaces for the DDN.

In the case of address translation, as with
other issues, the standard allows different imple-
mentations to interact successfully by specifying
exactly the actions to be taken by all IP-to-X.25
interfaces in the DDN. For [P-to-X.25 address
translation, hosts in the DDN must use two simple
translation formulas that directly map certain fields
in the IP address to other fields in the X.25 address,
and vice versa.

On the issue of how many virtual circuits are
opened between each host pair, only one X.25 vir-
tual circuit is opened between any two hosts on the
DDN. This certainly simplifies things, although it

SR
This article is
excerpted from
“The Pyramid
IP to X.25
Protocol Inter-
face: Merging
DDN and PDN
Approaches,”’
the author’s
technical paper
presented at
UniForum
1987.



24

May/June 1987

IP-to-X.25

CONTINUED

eliminates the possibility of added throughput be-
tween any pair of hosts through the use of multiple
virtual circuits. However, as DDN X.25 links can
operate near the upper limits of packet sizes (1,024
bytes per packet), window sizes (7 unacknowledged
packets) and transmission speeds (56Kb per second)
available in X.25 networks, the cost incurred is
minimized.

Regarding internetwork routing, the DDN
makes full use of the internetworking features of
the IP protocol. This relieves the interface from
having to resolve addresses for different physical
networks in order to route packets among these
networks.

Aside from the generic design issues explained
earlier, there are several network-specific features
that an IP-to-X.25 interface to the DDN must in-
clude. One of the most visible examples is the speci-
fication of DDN standard service. X.25 hosts on the
DDN can subscribe to either basic or standard ser-
vice. DDN basic service can be thought of as raw
X.25 service provided by the network for host-to-
host communication on one physical X.25 network.
Basic service does not imply the use of an I[P-to-
X.25 interface to access the network. More relevant
to this discussion, DDN standard service is oriented
toward DDN X.25 hosts using the standard TCP/IP
higher-level protocols. IP-to-X.25 interfaces on the
DDN must clearly specify DDN standard service by
means of a private or non-CCITT facility included
in all outgoing X.25 call request packets. Similarly,
these interfaces should expect this facility on incom-
ing X.25 call requests. Other network-specific fea-
tures are similarly made available through the use
of non-CCITT facilities (for example, DDN call
precedence).

The PDN Approach

In the case of Public Data Networks, a detailed
standards document in the fashion of the DDN
X.25 Host Interface Specification is not available.
Rather, there is a Request for Comments (RFC)
from the DDN Network Information Center (NIC)
— RFC 877, “A Standard for the Transmission of
IP Datagrams Over Public Data Networks.” In

addition, an excellent complement to this document
is the source code release of Purdue University’s
X.25 Network Interface (XNI) software for the
X25net portion of the Computer Science Research
Network (CSNET); the software is described in the
March 1983 issue of the ACM SIGCOMM’s “Pro-
ceedings of the Symposium on Data Communica-
tions.” This software, which is available to CSNET
members directly from the CSNET Coordination
and Information Center, can be considered a de
facto standard for interfacing IP to X.25 for opera-
tion over a PDN.

The address translation formulas used in the
DDN are convenient and efficient, but their use
assumes that the network administration entity has
complete control of both IP and X.25 address
spaces. This is true in the DDN where a central
organization, the NIC, is responsible for assigning
both IP and X.25 addresses to all DDN X.25 sites.
They can simply assign any available IP address and
then use the IP-to-X.25 formula to assign a corres-
ponding X.25 address, or vice versa.

Unfortunately, in the PDN case, the network
administration is not so centralized. Typically, the
X.25 address space is controlled by the PDN admin-
istrating agency, but the IP address space is still
controlled by the NIC. In the case of a logical net-
work like CSNET, the CSNET CIC does not control
either address space. They are forced to rely on the
PDN carrier for assignment of X.25 addresses, and
on the NIC for assignment of IP addresses. Because
of these practical limitations, IP-to-X.25 interfaces
for PDNs must use an alternate method to the for-
mula approach.

As described earlier (under the “General De-
sign Issues in Interfacing [P to X.25”” heading),
using an address mapping table is a simple and ef-
fective way of performing IP-to-X.25 address trans-
lation. Such a table is used by the CSNET XNI
software. This table contains one entry for each
host that the interface needs to communicate with,
including the local host. Each entry in the table
contains a host name, its [P address, its X.25 ad-
dress and other PDN-specific information for the
host. IP-to-X.25 address translation is then possible
by performing a table lookup operation.

On the issue of how many virtual circuits are
opened between each host pair, RFC 877 and the
CSNET XNI software allow for several X.25 virtual
circuits to exist between a pair of hosts. This makes
possible added throughput between any pair of
hosts by demultiplexing data over multiple virtual
circuits. This is a great advantage in the PDN con-
text, where the packet and window sizes (128 bytes
per packet and 2 unacknowledged packets, respec-
tively), and transmission speeds (9.6Kb per second)
used are typically small enough to cause significant



/Jusr/group CommUNIXations

23

delays in IP datagram transmission. The number of
virtual circuits to open to a remote host is specified
in the address mapping table entry for that host.

Because of practical network administration
limitations similar to those encountered with IP-to-
X.25 address mapping, the CSNET XNI software is
forced to take on many of the internetwork routing
responsibilities usually associated with IP in order
to operate successfully in an internetwork environ-
ment. The interface must resolve addresses for dif-
ferent physical networks in order to route packets
among these networks and maintain enough infor-
mation within itself to make proper use of any
available gateways. The [P-to-X.25 interface in the
gateway hosts must also take on additional routing
responsibilities because IP is not being used for this
purpose.

Aside from the generic design issues explained
above, there are several network-specific features
that an IP-to-X.25 interface to PDNs must include.
An important example is the specification of reverse
charging — collect calls. Each X.25 call request can
be made using either direct charging or reverse
charging. If desired, IP-to-X.25 interfaces on PDNs
can specify reverse charging by means of a standard

_CCITT facility included in outgoing X.25 call re-
quest packets. Similarly, these interfaces should be
prepared to handle this facility on incoming X.25
call requests from other hosts. Other network-
specific features are made available through the use
of facilities, both standard and non-standard. Ex-
amples of standard facilities are packet size, win-
dow size and throughput class negotiations. Exam-
ples of non-standard facilities are non-CCITT

packet size and window size negotiations still used
in some networks as historical remains of imple-
mentations that follow pre-1980 CCITT recommen-
dations.

In Conclusion

The number of different networks now accessible
with the DARPA family of protocols is considerably
larger than the traditional set of Ethernet and AR-
PANET. Of these network types, one that promises
to become increasingly important is X.25 networks.
More specifically, connecting the DARPA family of
protocols to X.25 networks involves creating an
interface between the IP and X.25 protocols.

Designing such an interface involves solving
many generic design problems, many of which have
already been resolved for the implementor by one
or both of the DDN and PDN standards described
above. Pyramid Technology Corp. recently imple-
mented this interface for its dualPort OSx operating
system, extending its DARPA-style networking
capabilities to the X.25 portion of the DDN, as well
as to a number of X.25 PDNs. By

The technical paper from which this article is ex-
cerpted covers some of the more interesting design
and implementation issues encountered while devel-
oping an IP-to-X.25 interface that complies with
both DDN and PDN requirements. A reprint of that
paper is available from /usr/group, 4655 Old Iron-
sides Dr., #200, Santa Clara, CA 95054. In addition,
the complete Conference Proceedings document
covering UniForum 1987, where the technical paper
was presented, can be purchased from /usr/group.

e =
For a reprint of
the complete
technical paper
from which this
article is ex-
cerpted, con-
tact /usr/group,
4655 Oid
Ironsides Dr.,
#200, Santa
Clara, CA
95054.



