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Improving the Performance of
Reliable Transport Protocols in
Mobile Computing Environments

Ramon Céceres and Liviu Iftode

Abstract— We explore the performance of reliable data
communication in mobile computing environments. Motion
across wireless cell boundaries causes increased delays and
packet losses while the network learns how to route data to
a host’s new location. Reliable transport protocols like TCP
interpret these delays and losses as signs of network conges-
tion. They consequently throttle their transmissions, fur-
ther degrading performance. We quantify this degradation
through measurements of protocol behavior in a wireless
networking testbed. We show how current TCP implemen-
tations introduce unacceptably long pauses in communica-
tion during cellular handoffs (800 milliseconds and longer),
and propose an end-to-end fast retransmission scheme that
can reduce these pauses to levels more suitable for human
interaction (200 milliseconds). Our work makes clear the
need for reliable transport protocols to differentiate be-
tween motion-related and congestion-related packet losses,
and suggests how to adapt these protocols to perform better
in mobile computing environments.

Keywords— Wireless networks, cellular handoffs, conges-
tion control, TCP, mobile IP.

I. INTRODUCTION

ELTABLE transport protocols have been tuned for

networks composed of wired links and stationary
hosts. They adapt to prevailing end-to-end delay condi-
tions throughout the life of a connection, and interpret
unexpected increases in delay as packet losses caused by
congestion. In response to perceived losses, protocols like
the Transmission Control Protocol (TCP) [1] aggressively
slow their transmissions to allow the network to recover.
These congestion control policies have proven beneficial in
improving the overall performance of networks like the In-
ternet. The premise underlying these policies, that packet
losses are largely due to congestion, is correct for existing
networks.

Future networks, however, will include wireless links and
mobile hosts. In particular, there will be local-area net-
works composed of wireless cells of a few meters in diame-
ter. Such microcellular networks are desirable for three im-
portant reasons: they offer high aggregate bandwidth, they
require low power from mobile transceivers, and they pro-
vide accurate location information. Users in microcellular
environments will often carry hosts across cell boundaries
without warning and in the midst of data transfers.
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Transport-level connections will thus encounter types of
delay and loss that are unrelated to congestion. First,
communication may pause while the handoff between cells
completes and packets can again be routed to and from
the mobile host. Second, packets may be lost due to fu-
tile transmissions over the wireless network when a mobile
host moves out of reach of other transceivers, especially
in networks with little or no overlap between cells. Third,
packets may be lost due to the relatively frequent transmis-
sion errors suffered by wireless links. Some performance
degradation due to these delays and losses is unavoidable.

These events also trigger congestion control procedures
that further degrade performance. In particular, TCP im-
plementations continually measure how long acknowledge-
ments take to return. They maintain a running average
of this delay and an estimate of the expected deviation in
delay from the average. If the current delay is longer than
the average by more than twice the expected deviation,
TCP assumes that the packet was lost. In response, TCP
retransmits the lost packet and initiates congestion con-
trol procedures to give the network a chance to recover [2].
First, TCP drops the transmission window size to reduce
the amount of data in transit through the network. Second,
it activates the slow-start algorithm to restrict the rate at
which the window grows to previous levels. Third, it resets
the retransmission timer to a backoff interval that doubles
with each consecutive timeout.

When motion is mistaken for congestion, these proce-
dures result in significant reductions in throughput and
unacceptable interactive delays for active connections. The
degradation is readily apparent, for example, to users of
emerging ubiquitous computing environments [3].

This paper quantifies the effects of motion on through-
put and delay, identifies the factors that contribute to the
loss of performance, and suggests an end-to-end approach
for alleviating the problem. It shows how waits for TCP’s
retransmission timeouts cause pauses in communication
that last 0.8 seconds and longer after each cell crossing.
Other researchers have called attention to the long pauses
caused by TCP’s exponential backoff policy [4][5][6], but
to our knowledge this is the first systematic treatment of
this problem. This paper also describes how using TCP’s
fast retransmission procedure can reduce these pauses to
0.2 seconds. We focus on TCP because it is the most
widely used reliable transport protocol and will be used
in at least the first generation of mobile computing envi-
ronments. Furthermore, lessons learned from TCP apply



2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 5, JUNE 1995

to other reliable transport protocols that must deal with
both mobility and congestion.

The remainder of this paper is organized as follows. Sec-
tion IT describes the wireless networking testbed used to ob-
tain our results. Section III presents the measured effects
of host motion on the performance of reliable transport
protocols. Section IV proposes and evaluates an end-to-
end approach to alleviating the negative effects of motion.
Section V discusses wireless transmission errors as an area
for future work, and Section VI concludes the paper.

II. WIRELESS NETWORKING TESTBED

We explore the effects of mobility through measurements
of transport protocol behavior in a wireless networking
testbed. The testbed consists of mobile hosts (MH), mo-
bility support stations (MSS), and stationary hosts (SH)
deployed in an ordinary office environment. Mobile hosts
connect to a 2-Mbit/second WaveLAN local-area wireless
network. WaveLLAN is a direct-sequence spread spectrum
radio product from NCR. Stationary hosts connect to a 10-
Mbit/second Ethernet local-area wired network. Mobility
support stations connect to both networks. Figure 1 shows
the minimum testbed configuration.

Fig. 1.

Wireless networking testbed

All hosts and support stations are equipped with 50-
MHz 1486 processors, 330-Mbyte hard disks, 16 Mbytes
of memory, and the necessary network interface hardware.
They run the 4.3BSD-Tahoe version of TCP from the Uni-
versity of California at Berkeley, Mobile IP software from
Columbia University [5], and the Mach 3.0 microkernel and
Unix server (MK77/UX37) from Carnegie Mellon Univer-
sity [7]. 4.3BSD-Tahoe TCP is widely used throughout the
Internet and implements exponential retransmission back-
offs and the slow-start algorithm.

A. Cellular handoff procedures

Each MSS defines one cell and is responsible for the MHs
in its cell. It acts as the default gateway for those MHs,
routing packets that originate in an MH from the wireless
to the wired part of the network. Similarly, it forwards
packets destined to an MH from the wired to the wireless
part of the network.

MHs and MSSs collaborate to perform handoffs between
cells. MSSs make their presence known by broadcasting
periodic beacons over the wireless network. An MH decides
to switch cells when it receives a beacon from a new MSS
with a stronger wireless signal than the beacon from the

old MSS, or when it receives the first beacon from a new
MSS after failing to receive beacons from the old MSS.

To switch cells the MH sends a greeting packet to the
new MSS, and changes its own routing tables to make the
new MSS its default gateway. It also notifies the new MSS
of the identity of the old MSS. The new MSS acknowledges
the greeting to the MH, adds the MH to the list of MHs
for which the new MSS is responsible, and begins to route
the MH’s packets accordingly. The new MSS also informs
the old MSS that the host has moved and can be reached
through the new MSS. The old MSS then adjusts its routing
tables in order to forward to the new MSS any packets that
arrive for the MH, and acknowledges the handoff to the new
MSS. Finally, the new MSS acknowledges the completion
of the handoff to the MH. Further details of this protocol
are found in [5].

B. Methodology

In our experiments, we initiate a reliable data transfer
over a TCP connection between an MH and an SH, we
cause the MH to cross cell boundaries while the connection
is active, and we measure the performance of the connec-
tion.

We simulate motion across cell boundaries in software.
The MH in our testbed is always in range of both MSSs, but
we modified the Mobile IP software on the MH to ignore
beacons from all but one MSS. After the MH spends a
specified number of beaconing periods in that MSS’s cell,
the modified software listens for a beacon from the other
MSS in order to initiate handoff procedures with the new

MSS.

An important benefit of simulating motion in software is
that it lets us study networks with overlapping cells as well
as networks with non-overlapping cells. When adjacent
cells overlap and an MH is in the region of overlap, pack-
ets can continue to flow between the MH and the old MSS
while the handoff to the new MSS is in progress. When cells
do not overlap, there is an unavoidable pause in network-
level communication while the MH is out of reach from the
old MSS and the handoff to the new MSS has not yet com-
pleted. The testbed allows us to explore the full range of
handoff scenarios, from the case when the MH is in con-
tact with both MSSs throughout the handoff, to the case
when the MH cannot communicate with any MSS for an
arbitrary interval of time after it leaves the old cell.

Another benefit of simulating motion in software is that
it gives us precise control over the instant when handoffs
begin. Under normal circumstances, handoffs begin at in-
determinate times based on the time remaining in a cell’s
beaconing period when a host enters the cell, or on the rel-
ative strengths of two wireless signals. Our testbed makes
this process deterministic and therefore allows us to reliably
reproduce test conditions. Finally, simulating motion in
software eliminates the need to physically move test equip-
ment during experiments.
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Fig. 2. Loss of throughput due to host motion

I1I. THE EFFECTS OF MOTION

We ran a number of experiments in the manner described
above. We found that throughput dropped significantly in
the presence of motion. We then analyzed the problem
in more detail to determine the causes of the performance
loss. We tracked the TCP sequence number and window
size over the lifetime of a connection to determine how TCP
behaved during handoffs. We also traced TCP and Mobile
IP packets during the course of each handoff to determine
if any packets were lost and why. This section presents our
results.

Due to space limitations, we only present results for the
case where data packets flow from the MH to the SH and
acknowledgement packets flow from the SH to the MH.
However, we also ran our experiments for the opposite case,
with very similar results.
both cases in Section IV-D.

We summarize our results for

A. Loss of throughput

Figure 2 shows the average application-level throughput
achieved when transferring 4 Mbytes of data between an
MH and an SH. From left to right, the vertical bars repre-
sent the throughput obtained under four scenarios:

¢ The MH does not move.

o The MH moves between overlapping cells.

¢ The MH moves between non-overlapping cells and re-
ceives a beacon from the new MSS at the instant it
leaves the old cell (0-second rendezvous delay).

¢ The MH moves between non-overlapping cells and re-
ceives a beacon from the new MSS one second after
leaving the old cell (1-second rendezvous delay).

In the scenarios that involve motion, the beaconing period
is 1 second and the MH switches cells every 8 beaconing
periods. These parameters were chosen to allow TCP con-
nections to attain maximum throughput between handoffs
while also allowing us to observe multiple handoffs during
a single data transfer.

We believe these four scenarios show a complete and fair
picture of the problems introduced by host motion. We
use the no-motion scenario as a base for comparison. The
motion scenario with overlapping cells represents the best
handoff performance possible with our hardware and soft-
ware. It is realizable in a real network only if overlap re-
gions are large enough, and hosts move slowly enough, for
handoff operations to complete while a moving host is still
in the overlap region. The scenario with zero rendezvous
delay represents the minimum network-level interruption
introduced by non-overlapping cell handoffs. It is realiz-
able only if the MH does not have to wait for a beacon
before it can communicate with the new MSS, for exam-
ple in a network where MSSs announce their presence by
means of a continuous signal. Finally, the scenario with
a l-second rendezvous delay shows what happens as the
length of network-level interruptions increases. It is a re-
alistic scenario when a periodic beaconing scheme is used,
since an MH may have to wait up to a full beaconing period
before it receives a beacon from the new MSS.

As shown in Figure 2, throughput degrades substan-
tially in the presence of motion across non-overlapping
cells. In the overlapping cell scenario, throughput degrades
only slightly, by 6%. In the non-overlapping cell scenario
with zero rendezvous delay, throughput drops by 12% even
though only 3 handoffs occur in the roughly 24-second life-
time of the connection. Throughput drops much further
with a 1-second rendezvous delay, by 31% with 3 handoffs
in roughly 29 seconds.

In the rest of this section we study the causes of this per-
formance degradation in increasing detail. We concentrate
on single handoffs to eliminate from our results any depen-
dencies on the parameters of the throughput test discussed
above (4 Mbytes of data with handoffs every 8 seconds).
Our results will thus apply to all cell handoffs in each mo-
tion scenario.
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Fig. 3. Behavior of TCP sequence number in response to cell boundary crossings
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Fig. 4. Behavior of TCP congestion window in response to cell boundary crossings

B. Pauses in communication

Figure 3 shows how the TCP sequence number behaves
over the life of a connection. In this example, the MH
moves between non-overlapping cells with a 1-second ren-
dezvous delay. As shown, the sequence number ceases to
advance for roughly 3 seconds after the first two cell cross-
ings, and for roughly 1 second after the last crossing. A
3-second pause is typical of a l-second rendezvous delay,
while a 1-second pause is more typical of a 0-second ren-
dezvous delay. During these pauses, TCP transmits no new
data and transport-level communication comes to a halt.

The effect is also visible in Figure 4, which graphs the
TCP congestion window over the life of the same connec-
tion. The congestion window is an upper bound on the
transmission window, which in turn controls how much un-
acknowledged data a TCP connection can have in transit
over the network. As shown, the congestion window stops
growing with every cell crossing. Some time after the cross-
ing, the window shrinks to its minimum value and eventu-
ally begins to grow again. The intervals between when the
window stops growing and when it begins to grow again
correspond to the 3-second and l-second pauses in com-
munication noted above.

C. Packet losses

The long pauses in communication are caused by TCP’s
response to packet losses. Losses occur due to routing in-
consistencies during non-overlapping cell handoffs. Con-
sider the route from the MH to the SH. When the MH
leaves a cell without warning, its routing tables continue
to point to the old MSS as the default gateway. The MH
does not know it has moved and therefore does not change
its routing tables until a beacon arrives from the new MSS.
Until then, the MH continues to send packets destined for
the SH directly to the old MSS. These packets are lost be-
cause the MH can no longer reach the old MSS through the
wireless interface.

Inconsistencies persist longer with the route from the
SH to the MH. The old MSS does not know that the MH
has left the cell until an explicit notification arrives from
the new MSS, which cannot send the notification before it
receives a greeting from the MH. Until the old MSS learns
of the MH’s motion, it continues to route packets directly
to the MH. These packets are also lost because the old
MSS can no longer reach the MH. Any other parts of the
network involved in the handoff must also wait for explicit
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Fig. 6. Handoff latency and related packet losses with a 1-second rendezvous delay

notification that the MH has moved before they can change
their routing tables to point away from the old MSS to the
new MSS.

Figure 5 shows what happens during one handoff in the
case of zero rendezvous delay. Although the beacon from
the new MSS arrives concurrently with the cell crossing,
the MH’s routing tables do not point to the new MSS until
0.05 seconds after the cell crossing. Similarly, the old MSS’s
routing tables do not point to the new MSS until 0.15 sec-
onds after the cell crossing. Although the system overhead
implicit in these figures can be reduced through careful im-
plementation, handoff latency cannot be altogether elimi-
nated because at least two packet exchanges are needed to
notify both the new MSS and the old MSS that the MH
has changed cells. Because these packets incur unavoid-
able propagation delays, there will always be a window of
opportunity during which both data and acknowledgement
packets can be routed to unreachable wireless transceivers.

An active TCP connection thus loses up to a full trans-
mission window’s worth of packets and related acknowl-
edgements during each handoff. Once the transmission
window fills, communication stops until the retransmission
timer expires. When a timeout occurs, TCP retransmits
the earliest unacknowledged packet, doubles the retrans-
mission interval, and resets the timer. If the handoff is not

yet complete when the timeout occurs, the retransmitted
packet is also lost and TCP waits for yet another time-
out before retransmitting. A single timeout is typical of
zero rendezvous delay, as shown on Figure 5. Two consec-
utive timeouts are typical of a 1-second rendezvous delay,
as shown on Figure 6.

It is evident how waits for retransmission timeouts freeze
transport-level communication for 0.8 seconds or more with
each cell crossing across non-overlapping cells, and are re-
sponsible for a large part of the throughput losses reported
earlier. In contrast, handoffs between overlapping cells do
not cause the same long pauses in communication because
the implementation of overlapping cells in our testbed in-
sures that no packets are lost during those handoffs. The
slight throughput losses reported earlier for the overlapping
cell scenario are due only to encapsulation and forwarding
delays during handoffs.

D. Slow recovery

As shown in Figure 4, the congestion window drops
abruptly after a cell crossing when the retransmission timer
goes off, but returns only gradually to its previous level
once transport-level communication resumes. TCP’s slow-
start algorithm [2] is responsible for this behavior. As ac-
knowledgements reach the TCP transmitter, slow start first
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grows the congestion window exponentially until it reaches
a threshold, then grows it linearly. The threshold is set to
one half of the window size at the time of the retransmis-
sion timeout. The slow start threshold thus decays expo-
nentially with consecutive timeouts.

The slow recovery after each handoff contributes to the
loss of throughput discussed earlier, but only moderately.
Our measurements show that the algorithm throttles trans-
missions for approximately 1 second after communication
resumes. At that point the connection again reaches its
maximum throughput (1.6 Mbit/second), and the conges-
tion window ceases to affect performance.

E. Unacceptable interactive response

Interactive delays are a concern in addition to through-
put. Studies of human factors indicate that people per-
ceive interactive response to be “bad” if it takes longer
than 100 to 200 milliseconds [8]. As discussed above and
shown in Figures 3, 4, 5, and 6, transport-level commu-
nication comes to a halt for 800 milliseconds or longer
after non-overlapping cell crossings. Furthermore, these
pauses grow exponentially with growing rendezvous delays
due to TCP’s exponential retransmission backoff policy.
In interactive applications that use TCP for reliable data
transport, user inputs and their responses will be unable
to travel between mobile hosts and remote servers during
these pauses.

Although users may not always interact with their com-
puters while moving, there will certainly be times when
they will do so soon after stopping. Our results show that
pauses will persist from 650 milliseconds to several seconds
after a host enters a new cell and the handoff completes.
Motion will thus lead to unacceptable interactive response
unless we solve the problems presented in this section.

IV. ALLEVIATING THE EFFECTS OF MOTION

Our results demonstrate that we must improve the per-
formance of reliable transport communication in mobile
computing environments. Two approaches are possible:
hiding motion from the transport level, and adapting the
transport level to react better to motion.

A. Smooth handoffs

Cellular networks should strive to provide smooth hand-
offs in order to eliminate packet losses during cell crossings
and thus hide motion from the transport level. As we have
shown with our testbed, one way to achieve this goal is
to implement “make then break” handoffs and to engineer
enough overlap between cells to insure that handoffs com-
plete before an MH loses contact with the old MSS. How-
ever, there are compelling reasons to build networks with
little or no overlap between small cells:

o They offer high aggregate bandwidth because they can
use the same portion of the electromagnetic spectrum
in nearby cells. Bandwidth is scarce in wireless net-
works.

o They support low-powered mobile transceivers be-
cause signals need only reach short distances. Mobile

computers have stringent power consumption require-
ments.

o They provide accurate location information because
cells are small and sharply defined. Location informa-
tion adds important functionality to distributed sys-
tems.

It is possible to provide smooth handoffs in spite of
packet losses due to motion between non-overlapping cells.
For example, MSSs could buffer packets they have recently
sent to MHs. When an MSS is notified that an MH has
moved out of the MSS’s cell, the MSS can send the buffered
packets for that MH to the MSS now responsible for the
MH. The new MSS can in turn forward the packets to the
MH. This technique increases the memory requirements of
the MSSs, but may prove feasible because the amount of
data that an MSS needs to buffer is bounded by the max-
imum handoff latency between adjacent cells.

However, it is unlikely that all cellular networks will
provide perfectly smooth handoffs in the near future. It
is therefore worthwhile to investigate transport-level tech-
niques for alleviating the effects of packet losses during

handoffs.

B. More accurate retransmission timers

The long pauses in communication presented in Sec-
tion III are due partly to inaccurate retransmission timers.
TCP implementations historically have used coarse timers
with a 300- to 500-millisecond resolution. For example,
the 4.3BSD-Tahoe implementation in our testbed uses a
500-millisecond resolution timer. The resulting minimum
timeout value is twice the timer resolution, or 1 second
(this 1-second value is evident in Figures 5 and 6). The
retransmission timer is intended to track the round-trip
delay experienced by a TCP connection, but actual round-
trip delays are much smaller than 500 milliseconds. For ex-
ample, connections in our testbed experience well under 1
millisecond of round-trip delay. It may appear that chang-
ing TCP implementations to use higher-resolution timers
would result in more accurate round-trip time estimates
and would thus reduce pauses in communication during
cellular handoffs.

However, more accurate timers will not solve the prob-
lems introduced by motion across wireless cell boundaries.
A timer that successfully tracks the round-trip delay will
lead to timeout values on the order of 1 millisecond or less.
These small timeout values will result in multiple timeouts
while a handoff completes, which in turn will lead to the
following three problems:

o Multiple reductions of the slow-start threshold. The
threshold decays exponentially with consecutive time-
outs and can quickly reach the minimum window size
of one packet. When communication resumes after a
handoff, connections will find themselves in the linear
region of window growth dictated by the slow start
algorithm, and will take many round-trip times be-
fore they reach maximum throughput. Our testbed
avoided this problem because of its coarse timers.
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o Multiple backoffs of the retransmission timer. Backoffs
grow exponentially with consecutive timeouts and can
quickly lead to the long pauses in communication we
are trying to avoid.

o Multiple retransmissions before the routes become con-
sistent. These futile retransmissions waste bandwidth
in the slow wireless medium.

In general, it is difficult for a timer-based scheme to adapt
to the abrupt changes in round-trip delay introduced by
cellular handoffs.

C. Fast retransmissions

An attractive end-to-end solution [9] to the problems pre-
sented in Section III is for the transport protocol to resume
communication immediately after handoffs complete, with-
out waiting for a retransmission timeout. Modern TCP im-
plementations, including the 4.3BSD-Tahoe implementa-
tion in our testbed, already perform similar fast retransmis-
stons when a transmitter receives triplicate acknowledge-
ments from a remote receiver. When activated, the fast
retransmission procedure immediately retransmits the ear-
liest unacknowledged packet, drops the transmission win-
dow, and initiates the slow-start algorithm. The rationale
behind current fast retransmissions is that triplicate ac-
knowledgements clearly indicate that packet loss has oc-

curred, and thus there is no need to wait for a timeout
before retransmitting.

We made modest changes to the TCP and Mobile IP
software in our testbed to invoke the existing fast retrans-
mission procedure as soon as routes become consistent fol-
lowing a cell crossing. First, the Mobile IP software on the
MH signals the TCP software on the MH when a greeting
acknowledgement arrives from the new MSS. Second, the
TCP transmitter on the MH invokes the fast retransmis-
sion procedure when it receives such a signal. The signal
is delivered through shared memory between TCP and IP
software in the same host.

Figure 7 shows the measured effect of fast retransmis-
sions after a non-overlapping cell handoff with a 0-second
rendezvous delay. As shown, fast retransmissions cause a
TCP connection to resume communication 50 milliseconds
after the handoff completes. In contrast, the retransmis-
sion timeout would not have occurred until 650 milliseconds
after the handoff completed.

An additional communication step is necessary to inform
the TCP software on the SH of the events occurring at the
other end of the connection. First, the Mobile IP soft-
ware on the MH signals the TCP software on the MH of
the completion of the handoff, as described above. Second,
the TCP software on the MH forwards the signal over the
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network to the SH. Third, the TCP software on the SH
invokes the fast retransmission procedure when it receives
such a signal. The signal travels from the MH to the SH
through normal IP routes and can take either of two forms:
It can be a specially marked TCP acknowledgement packet
containing the sequence number of the last data packet suc-
cessfully received by the MH, or it can be three identical
but ordinary TCP acknowledgement packets. The tripli-
cate acknowledgement approach consumes more resources
but does not require modifications to TCP implementa-
tions on stationary hosts.

Figure 8 shows the measured effect of fast retransmis-
sions after a non-overlapping cell handoff with a 1-second
rendezvous delay. As shown, fast retransmissions again
causes a TCP connection to resume communication 50 mil-
liseconds seconds after the handoff completes. In contrast,
the retransmission timeout would not have occurred until
1,650 milliseconds after the handoff completed.

The fast retransmission approach has three desirable fea-
tures:

o It requires minimal changes to software on the end
hosts. It changes Mobile IP only to propagate an end-
of-handoff signal one layer up in the protocol hierar-
chy. It changes TCP only to invoke the existing fast
retransmission procedure when the end-of-handoff sig-
nal arrives. It need not change TCP on stationary
hosts if triplicate acknowledgements are used.

o It does not depend on special support from the net-
work, including mobility support stations or other in-
termediate routers. It therefore does not depend on
any one mobile networking environment and will work
over an internetwork.

o It follows established congestion avoidance policies by
closing the transmission window and using the slow-
start algorithm after the initial retransmission. It thus
avoids congesting the cell the MH has just entered.
Gently probing the congestion state of a new route,
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Improvements in latency due to fast retransmissions

such as the route to a new cell, is one of the principal
motivations behind the slow start algorithm.

It is important to note that there is no need to initi-
ate fast retransmissions in networks that guarantee smooth
handoffs, that is, in networks that never lose packets dur-
ing handoffs. In that case, the MH software involved in
the handoff need not signal the transport level when hand-
offs complete. The fast retransmission scheme therefore
coexists with any handoff scheme. The software that im-
plements the scheme resides in the transport level and is
exercised only when needed.

D. Improvements in latency

Figure 9 shows the pauses in transport-level communica-
tion caused by motion across non-overlapping cell bound-
aries, together with the improvements gained by applying
the fast retransmission procedure. As shown, when the
transmitter resides on the MH, fast retransmissions reduce
these pauses from 0.8 to 0.2 seconds for a 0-second ren-
dezvous delay, and from 2.8 to 1.2 seconds for a 1-second
rendezvous delay.

Figure 9 also shows our results for the case when the TCP
transmitter resides on the SH, where pauses drop from 0.6
to 0.3 seconds for (0-second rendezvous delays, and from
2.6 to 1.3 seconds for 1-second rendezvous delays. Pauses
before the improvements are shorter when the transmitter
is on the SH (e.g., 0.6 vs. 0.8 seconds for 0-second ren-
dezvous delays) because data packets incur added propa-
gation delay before they are lost. Effectively, lost packets
are sent earlier before the cell crossing, and thus retrans-
mission timeouts occur earlier after the crossing. Pauses
after the improvements are longer when the transmitter is
on the SH (e.g., 0.3 vs. 0.2 seconds for 0-second rendezvous
delays) because the fast retransmission must wait for an ac-
knowledgement packet to travel between the MH and the
SH after the handoff completes.

The fast retransmission scheme thus succeeds in reduc-
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Fig. 10. Improvements in throughput due to fast retransmissions

ing interactive delays to 200-300 milliseconds beyond the
rendezvous. Reducing handoff latency through careful im-
plementation would further reduce this remaining delay.
The Mobile IP software in our testbed is an early exam-
ple of support for mobile networking and was not writ-
ten with fast handoffs in mind. For example, it incurs
substantial system overhead by employing application-level
processes to process beacons, change routes, and perform
other handoff-related functions. A more efficient imple-
mentation of handoffs combined with fast retransmissions
should in all cases bring pauses in communication to 100
milliseconds or less after the rendezvous. If users do not
attempt to interact with their mobile computers until they
stop moving across cell boundaries, interactive delays will
then drop to acceptable levels.

E. Improvements in throughput

We also measured significant improvements in through-
put due to the fast retransmission scheme. As shown in
Figure 10 for the test described in Section III-A| through-
put improves from 1400 to 1490 Kbit/second for 0-second
rendezvous delays, and from 1100 to 1380 Kbit/second for
1-second rendezvous delays. Some throughput losses re-
main because a transport-level scheme like fast retrans-
missions does not reduce network-level delays and packet
losses, and because the slow-start algorithm throttles con-
nections for some time after transport-level communication
resumes.

V. WIRELESS TRANSMISSION ERRORS

Even in the absence of motion, the WaveLAN network
in our testbed suffers from relatively frequent packet losses
due to physical transmission errors. A separate mea-
surement study found that WaveLAN exhibited excellent
packet capture rates (over 99%) in an indoor environ-
ment [10]. However, in our environment, packet loss fre-
quency varies widely even across short distances and de-
pends on such factors as the positions of antennas in a

room. Such problems are common in wireless communica-
tion because wireless media are vulnerable to ambient noise
and multipath interference. Commonly cited bit error rates
for radio and infrared links are 10~% or worse, compared to
10712 or better for fiber optic links.

Wireless transmission errors will also trigger the
transport-level problems described in Section III. One pos-
sible solution is for the link-layer protocol that controls
wireless links to retransmit packets lost on those links and
thus hide the losses from higher layers. However, recent
research shows that, under certain packet loss conditions,
competing retransmission strategies in the link and trans-
port layers can interact to reduce end-to-end throughput
while increasing link utilization [11]. Alternative tech-
niques such as selective retransmissions at the transport
layer may prove more effective than link-layer retransmis-
sions.

We wanted to isolate the effects of motion across cell
boundaries from the effects of wireless transmission errors.
We solved the problem by positioning the WaveLAN an-
tennas physically close together in an area relatively free
from ambient radiation and multipath problems. Packet
losses in the absence of cell crossings then dropped to neg-
ligible levels. We also repeated all our handoff experiments
using a wired network to emulate a wireless network; we
substituted a second Ethernet for the WaveLAN in our
testbed and found no fundamental differences in our re-
sults. We did not treat transmission errors any further in
order to concentrate on handoffs. Nevertheless, the impact
of wireless transmission errors on reliable transport proto-
cols warrants further study.

VI. CONCLUSIONS

Mobility changes important assumptions on which ex-
isting systems operate. In particular, networks that in-
clude wireless links and mobile hosts suffer from delays
and packet losses that are unrelated to congestion. Cur-
rent reliable transport protocols react to these delays and
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losses by abruptly slowing their transmissions, a response
that further degrades the performance of active connec-
tions. We have identified the factors that contribute to
this performance degradation and have quantified their ef-
fects in detail. We have shown how waits for retransmis-
sion timeouts cause pauses in communication at least 650
milliseconds longer than the underlying network-level in-
terruption. These pauses are readily noticed by interactive
users and significantly reduce throughput.

We have also described a fast retransmission scheme that
can reduce the pauses in communication to 50 milliseconds
past the moment when transport-level communication re-
sumes. Fast retransmissions thus reduce interactive delays
to acceptable levels and regain much of the lost through-
put. The fast retransmission approach is attractive because
it calls for only minimal changes to end systems, relies on
no special support from the underlying network or inter-
mediate routers, follows established congestion avoidance
procedures, and preserves end-to-end reliability semantics.
The approach is thus applicable to a large and varied in-
ternetwork like the Internet.

Our work makes clear the need for reliable trans-
port protocols to differentiate between motion-related and
congestion-related packet losses. Our results can be used
to adapt TCP to mobile computing environments. They
also apply to other reliable transport protocols that must
cope with both mobility and congestion.
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