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1. INTRODUCTION
Cellular data networks have recently seen an ex-

plosion in their usage due to the widespread deploy-
ment of 3G technologies and the rapid proliferation
of smartphones. People are increasingly using their
smartphones on the go and expect always-on, high
quality connectivity at all times.

A key network primitive that enables continu-
ous connectivity in cellular networks is handoff, or
the transfer of a device’s connection from one cell
sector to another. Although handoffs are neces-
sary for mobile devices to maintain connectivity,
a recent study [8] showed that handoffs generally
cause short-term disruptions in application perfor-
mance. Similarly, simulation studies [2] have shown
that handoffs could degrade performance of real-
time applications such as VoIP. Moreover, some net-
works are prone to making handoff decisions sub-
optimally [8], incurring overhead for both applica-
tions and the infrastructure when performing un-
necessary handoffs.

Given the negative impact of handoffs on appli-
cation performance, applications could benefit from
the ability to predict impending handoffs with rea-
sonable accuracy, and modify their behavior to counter
the performance degradation that accompanies hand-
offs. Recent work [6] has shown that handsets can
make effective use of similar performance predic-
tions to reduce energy consumption. In addition,
the network infrastructure could utilize the ability
to predict conditions that are likely to require hand-
offs to improve handoff decisions and resource allo-
cation. However, predicting future handoffs is chal-
lenging because they are a function of unforeseeable
attributes such as user mobility and changes in the
environment.

In this paper, we study predictability of hand-
offs based on the data from a major US cellular
provider’s radio network. We start by showing that
attributes that reflect recent mobility history, con-
nected cell density, and signal strength variation are

correlated with future handoff rates (§4). Then, we
develop a two-phase machine learning framework
that uses a combination of these attributes to pre-
dict the occurrence and the frequency of handoffs
in the near future (§5).

Our evaluation on a large number of real hand-
off traces shows promising results. Using informa-
tion available at either the handset or the network
infrastructure, we are able to achieve 80% accu-
racy in predicting the occurrence of a handoff in
the near future – much better than the 53% ac-
curacy achieved by a predictor. Overall, we believe
that our analysis provides a promising start towards
a practical framework that handsets could use to
accurately predict handoffs and better tolerate the
performance disruptions that can accompany them.

2. HANDOFFS IN UMTS NETWORK
We consider handoffs in a UMTS (Universal Mo-

bile Telecommunications System) network, the most
common 3G standard in the world. In a UMTS net-
work, a user device connects to a set of cells. A cell
is defined by the area covered by a single antenna on
a physical basestation (typically a few km2) and its
frequency (e.g., 850Mhz or 1900Mhz). Each bases-
tation typically has 3-6 cells, and is managed by
a Radio Network Controller (RNC). A single RNC
controls tens to hundreds of basestations. In order
to maintain IP connections while users are mobile,
all IP traffic from a device is tunneled through the
RNC to the core network.

At any point in time, a user device may be within
the coverage area of multiple cells. When a device
begins transmitting or receiving data, it establishes
a connection with one or more of these cells, typi-
cally the ones with a sufficiently high signal-to-noise
ratio (SNR). The set of cells a device is connected
to, which must all be on the same frequency, is
called the active set. In the network we examine,
the size of the active set is limited to 4. While con-
nected, cells may be added or removed from the ac-
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Figure 1: Distributions of (a) time to next handoff over all times in all traces, and (b) number
of handoffs in four time interval sizes.

tive set as their SNRs change. This process is called
soft handover. In addition, it may disconnect from
all cells in the active set and instead connect to cells
on a different frequency. This event is called inter-
frequency handover. At each point in time, only one
cell in the active set, called the serving cell, will ac-
tually transmit data to the device.1 This is typically
the cell with the highest SNR. When data ceases to
be sent or received for a short time period (typically
a few seconds), the device disconnects from all cells.

In this paper, we define a handoff to be a change
in a device’s serving cell, as this change physically
alters a device’s network path and, thus, can im-
pact performance. It also involves signalling over-
head. Note that a handoff is distinct from the pro-
cess of soft handover, which may add or remove cells
from a device’s active set without actually chang-
ing the serving cell. However, handoff includes all
inter-frequency handover events. Finally, note that
there can be no handoffs when a device is idle, as
it does not have any serving cell. Handoff deci-
sions are based on a deterministic function of recent
SNR measurements reported by the device and the
load on each cell [7]. While the network can deter-
mine whether a handoff will occur at the current
time instant, future handoffs are affected by less
predictable factors such as user mobility and envi-
ronmental changes, which affect channel quality.

3. DATA SET
To analyze the predictability of handoffs of real

users, we collected 1 day of anonymized event logs
from several RNCs in a major U.S. cellular oper-
ator in May 2011. These RNCs control a signif-
icant fraction of the base-stations in a large U.S.
city. We analyze events from three logs the RNC
maintains: the ServCellLog, which records the serv-
ing cell and active set for each device every two sec-
1HSPA devices, which generate the vast majority of traffic in
the UMTS network we examine, have a single serving cell,
but older devices receive data from all cells in the active set
simultaneously.

onds when the device is active; the SNRLog, which
records the SNR values of all cells measured by a
device in each measurement report sent to the RNC;
and the SOHOLog, which records the soft handover
events (i.e., additions and removals from each de-
vice’s active set). Each log record is timestamped
and devices are anonymously identified by an irre-
versible hash of the device’s IMSI, which is unique
per SIM card. All device and subscriber identifiers
are anonymized to protect privacy without affect-
ing the usefulness of our analysis. Furthermore, the
data set does not permit reversing the anonymiza-
tion or re-identification of subscribers.

For each device, the aforementioned events are
captured when its radio is in the HSPA active state
(i.e., in the DCH state described in [4]). We define a
trace to be the sequence of events from a device for a
contiguous active time. We determine a handoff oc-
curred in a trace whenever the serving cell changes
between two consecutive events in ServCellLog. To
eliminate boundary effects of short traces, we con-
centrate on long traces and, thus, filtered out all
traces that were shorter than 5 minutes. In total,
we analyzed 5,000 traces. In these traces, we saw
about 60,000 handoff events between approximately
1,200 distinct cells.

We note that although we analyze handoffs from
events seen at RNCs, these events could be made
available to the applications running on a device as
well. Some events are already exposed via smart-
phone APIs (e.g., SNR values), while we believe
others could be made available from cellular device
drivers. This paper motivates making this informa-
tion available via API.

To illustrate properties of handoffs in our dataset,
Figure 1(a) plots the cumulative distribution func-
tion (CDF) of the time to next handoff for a random
sample in our traces. The CDF levels off at about
55% because 45% of the points either fall within
a trace that has no handoffs or fall after the last
handoff in a trace. This plot suggests the following
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Figure 2: The handoff rate in the next 60 seconds compared with (a) the handoff rate in the
past 60 seconds, (b) the size of the active set, (c) the rate of updates to the active set, and (d)
the mean signal strength of the serving cell. For clarity, we quantize the samples into groups
and plot the mean and standard deviation of each group.

naive handoff predictor: estimate the likelihood of a
handoff occurring within t seconds as the percentile
that corresponds to t in the plot. For instance, the
naive predictor would estimate the likelihood of a
handoff occurring within the next 30 seconds to be
always 22% and within 200 seconds to be 47%.

Figure 1(b) plots the CDF of the number of hand-
offs in all 30, 60, 120 and 240 second time intervals
in our traces. The figure shows that there is no
handoff in about 80%, 70%, 60%, and 60% of 30,
60, 120, and 240 second intervals, respectively. On
the other hand, some intervals have many handoffs.
For example, 1% of 30 second intervals have more
than 5 handoffs. Thus, applications may want to
predict not only whether a handoff will occur, but
also the frequency of handoffs.

4. DISCRIMINATIVE ATTRIBUTES
The key to predicting future handoffs is uncover-

ing attributes that have a strong correlation with
future handoffs rates. In this section, we describe
four attributes that we found to have a correlation
with future handoffs, namely past handoff rate, size
of the active set, active set update rate and signal
strength variation. Each of these attributes could
be obtained both on the handset and at the RNC,
making our prediction technique useful for both ap-
plication developers and network operators.

To show the correlations, we averaged an attribute
value over a historical time window of h seconds
and plotted it against the handoff rate of the next
t seconds. Although we experimented with various

historical and future window sizes, we show results
for only h = 60 seconds and t = 60 seconds due to
space limitations. The correlations remained simi-
lar for other choices of h and t as well.

For each plot in Figure 2, we grouped data points
into clusters based on the attribute values and plot-
ted its mean future handoff rate with its standard
deviation. We also plotted the size of each group
on the second y axis. We next describe each of the
attributes in detail.

4.1 Past Handoff Rate
We hypothesized that handoff rates of the recent

past is a good predictor of handoffs in the near fu-
ture. This is because in short time scales one’s mo-
bility pattern is likely to stay the same. Figure 2
(a) depicts the correlation between the past hand-
off rate and the future handoff rate. The figure
shows that the correlation between the past and fu-
ture handoff rates is quite pronounced (correlation
coefficient of 0.56), which indicates that historical
handoff rates are potentially a strong predictor. As
we show in § 5, this is indeed the case.

4.2 Size of the Active Set
Recall that an active set contains up to 4 cells

that are above a certain signal strength threshold.
A large number of cells in the active set implies
more options in choosing a serving cell, and thus a
stronger potential for handoffs.

Figure 2 (b) shows the correlation between the
size of the active set and the future handoff rate. Al-



though the figure shows a positive correlation (cor-
relation coefficient of 0.39), there are two factors
that reduce the effectiveness of the active set size
at predicting future handoff rates: large standard
deviations and the dips that occur when the active
set size is 1, 2 and 3. Large standard deviations
are the result of the active set sizes not reflecting
the mobility of the handset. The dips that occur at
integral values are due to a large number of station-
ary users that fall within these three groups. This
is because stationary users tend to have a constant
active set size and no handoffs. We verified that
groups that correspond to integral set sizes indeed
contain a large fraction of points with no handoffs.

4.3 Active Set Update Rate
Changes in the active set, such as an addition or a

removal of a cell, may be good indicators of mobility
and, consequentially, of future handoff rates. Fig-
ure 2 (c) shows a positive correlation between the
mean active set update rate and the future handoff
rate (correlation coefficient of 0.5). The decrease in
correlation when active set update is greater than
0.48 is due to the small sample size (less than 100
points per group) as shown on the second y axis.

Note that changes to the active set may be caused
by removal and additions of cells with similar signal
strengths due to signal strength fluctuations. These
changes may not lead to future handoffs. Indeed,
in § 5, we show that using active set update rates
results in relatively high false positive rates.

4.4 Signal Strength Variation
Since the instantaneous handoff decisions made

by the RNC depend upon the signal strength fluctu-
ations of the cells in the active set, there might be a
correlation between recent fluctuations in the signal
strength of the serving cell and the future handoff
rate. Figure 2 (d) plots the correlation between the
mean serving cell signal strength variance and the
future handoff rate. Unfortunately, the correlation
is relative small (correlation coefficient of 0.18). In-
deed, as we show in § 5, this attribute turned out to
be the worst predictor of future handoff rates. This
may be due to the fact that the variance of the sig-
nal strength of the serving cell is irrelevant unless
the signal strength falls below a certain threshold.

5. PREDICTING HANDOFF BEHAVIOR
This section describes our handoff prediction al-

gorithm and its evaluations. We first present our
prediction algorithm, which is divided into two parts:
predicting the occurrence of a handoff and its fre-
quency. Then, we answer four questions related to

the accuracy of the predictor:
1. What’s the accuracy of our occurrence pre-

dictor? (§5.2.1)

2. How much history do we need for accurate
prediction? (§5.2.2)

3. How sensitive is the accuracy to the future
window size? (§5.2.3)

4. What’s the overall accuracy of our predictor
including the frequency predictor? (§5.2.4)

5.1 The Learning Algorithm
Handoff predictions are made over a future time

window of a certain length. We use the features
described in §4 to train a two-stage cascading pre-
dictor. The first level decides whether there is an
impending handoff in the time window considered
or not (occurrence predictor). If the window is large
enough such that more than a few handoffs could
occur, we apply the second binary predictor which
classifies each handoff period as a period of high
or low handoff frequency, which we define in §5.2.4
(frequency predictor).

Both our prediction classifiers use AdaBoost [1]
with decision stumps for the training phase. We
have chosen to use boosting since it has been shown
to work well for a variety of classification tasks [9,
5]. We tried other approaches, such as Logistic
Regression and naive heuristic-based methods, and
found that AdaBoost provides the best results. We
also obtained results with a single multiclass clas-
sifier (no handoff, high frequency handoff, low fre-
quency handoff) instead of our two-stage predictor
and found that the latter results in higher accuracy.

5.2 Evaluation
For evaluation, we trained our predictor on one-

fourth of the data with 5-fold cross-validation2 and
used the remaining for testing purposes.

5.2.1 Predicting the Occurrence
We first test the accuracy of the handoff occur-

rence predictor. We use three metrics for accuracy:
1) overall accuracy, the percentage of test exam-
ples predicted correctly, 2) false negative rate, the
percentage of actual handoff events in the test set
wrongly classified as non-handoffs, and 3) false posi-
tive rate, the percentage of actual non-handoffs mis-
takenly predicted as handoffs.

Table 1 shows the performance of our combined

2In k-fold cross-validation, the training data set is partitioned
into k parts, and k training and testing iterations are per-
formed, each time using k − 1 partitions used for training
and one used for testing. The final classifier is the average of
these k runs.



predictor along with other simple predictors over a
future window of 60 seconds. Specifically, the table
shows the prediction performance of each attribute
when it is the only feature used in the learner as
well as the performance of a naive predictor from
§ 3. Each attribute is computed over 10, 30, and 60
seconds of history to best capture temporal varia-
tions (we explain this choice in §5.2.2).

Attribute Accuracy False Positive False Negative

Past handoff rate 79.5% 11.14% 42.0%
Mean active set size 76.1% 11.5% 51.0%
Active set update rate 76.5% 15.3% 43.7%
Signal strength variance 75.7% 13.4% 49.5%

Combined predictor 80.3% 11.6% 38.3%
Naive predictor 53.4% 31.1% 69.0%

Table 1: Prediction performance of individ-
ual features, combined features and the naive
predictor.

Table 1 shows that all of the attributes result in
reasonable accuracy when used alone in the predic-
tor, verifying our intuition about their predictive
power. We also see that the combined classifier im-
proves upon the overall accuracy and the false neg-
ative rate (% of actual handoff events missed). The
combined predictor is also much more accurate than
the naive heuristic-based predictor. Note that the
false negative rate in all cases is much higher, and
overall accuracy is biased towards the false positive
rate. This is because handoff events are infrequent.
For example, Figure 1 shows that around 70% of
data points have no handoffs in the next 60 seconds.

Reducing False Negatives: A high overall ac-
curacy may not be sufficient for a handoff predictor.
For example, a streaming application may be able to
tolerate false handoff predictions by using a little ex-
tra buffering but may not be able to tolerate missed
handoffs because unexpected disruptions may cause
a stall in the stream. In other words, the applica-
tion may want to minimize the false negative rate
possibly at the cost of a higher false positive rate.

We can reduce the false negative rates shown in
Table 1 by assigning a higher cost to false negatives
than false positives through Asymmetric Boosting [3].
In particular, we show results when the cost of a
false negative is twice that of a false positive3.

Table 2 shows that this cost-sensitive prediction
results in a large reduction in the false negative rate
at the expense of a modest increase in the false pos-
itive rate and a slight decrease in overall accuracy.
It also shows that some attributes respond more
sharply to the cost-sensitive predictor than others.
For example, the false negative rate for mean ac-

3In general, we found that higher values caused convergence
issues and lower values led to worse false negative rates.

Attribute Accuracy False Positive False Negative

Past handoff rate 79.0% 17.0% 30.4%
Mean active set size 72.6% 31.1% 18.8%
Active set update rate 71.7% 32.4% 18.8%
Signal strength variance 71.8% 32.2% 19.0%

Combined predictor 78.1% 21.8% 22.0%

Table 2: Prediction performance of individ-
ual features and the combined predictor with
a cost-sensitive classifier.

tive set size dropped precipitously from 51% to
19% with the introduction of the asymmetric cost
values. In contrast, past handoff rate still has a
higher false negative rate (30%) than its false pos-
itive rate (17%). In other words, it is conservative
in predicting handoff occurrences even after cost-
sensitivity is introduced. We conjecture that this is
due to the relatively smaller variation in the past
handoff rate values, as shown in Figure 2 (a). At-
tributes with high variance would be more respon-
sive to cost-sensitive prediction and hence more ag-
gressive in predicting the handoff occurrence.

5.2.2 How Much History is Needed?
Each attribute discussed in §4 is computed over

one or more recent time windows. Predicting based
on more history can be beneficial because it will
better capture temporal variations. However, the
more history needed, the longer a handset will have
to wait to make accurate predictions after initiating
activity. Thus, we want to find the the minimum
history needed for good predictive power.

To determine how much history is needed, Fig-
ure 3 plots prediction accuracy for the next 60 sec-
onds (without the cost-sensitive modification) as we
increase the amount of history used. To ensure that
more history never reduces predictive power, each
marked x-axis point x represents a predictor that
uses attributes computed using x seconds of history
in addition to attributes computed using x′ seconds
of history for all marked x-axis points x′ < x. For
example, the point at x = 60 shows the accuracy
of a predictor using attributes computed over 5, 10,
30 and 60 second history windows. Figure 3 shows
that using more history improves accuracy primar-
ily due to a reduction in false negatives. This is be-
cause observing slightly more history is much more
likely to accurately measure the true past hand-
off rate and hence capture the short-term mobility
pattern better. Nonetheless, it is clear that the per-
formance for all three error metrics doesn’t improve
much beyond 60 seconds of history. Hence, we use
attributes computed on 10, 30, and 60 seconds of
history in our classifier.

5.2.3 Predicting over Different Time Windows
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Since different applications may want to forecast
the likelihood of handoffs over different time inter-
vals, we evaluate prediction accuracy over several
different prediction time windows in Figure 4. Each
point (x, y) on an error curve shows the prediction
error y in predicting whether there is going to be
a handoff within the next x seconds. Also plotted
in dotted curves are the error rates for the naive
predictor. The results clearly show that our predic-
tor is more accurate than the naive predictor for all
prediction windows.
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Figure 4: Handoff predictor performance as
the prediction window length is increased.

5.2.4 Predicting Handoff Frequency
As we observed in §3, some time intervals have

many more handoffs than others, so it is also useful
to predict the frequency of handoffs. For example,
a streaming application may benefit by sizing its
buffer based on the frequency of potential disrup-
tions. Hence, we implement a second-stage clas-
sifier that takes positive handoff predictions from
the first-stage and classifies them into low- or high-
frequency. The threshold for a high-frequency pe-
riod is the median non-zero number of handoffs dur-
ing the period for the entire dataset. For example,
from Figure 1 (b), for the 60 second interval, 4 or
more handoffs is considered high frequency.

Table 3 shows the results for this classifier for the
next 60 seconds. It shows a large majority of inter-
vals are predicted correctly (94% of low-frequency
and 77% of high-frequency intervals). We also note
that almost all (98.5%) of the false positives from
the first-stage classifier (not shown) are classified

into low-frequency by the second-stage, so adding
this stage does not compound those errors.

Actual
Low Freq. High Freq.

Predicted
Low Freq. 94.5% 5.5%
High Freq. 23.3% 76.7%

Table 3: Predicted vs actual handoff frequen-
cies for the next 60 seconds. Bolded cells are
correct predictions.

6. CONCLUSION AND FUTURE WORK
Predicting handoff is important for mobile appli-

cations and wireless network operators. This pa-
per explored the possibility of accurately predict-
ing future handoffs using a simple set of attributes
that are readily available at the handset as well as
at network. To this end, we analyzed several at-
tributes that intuitively reflect the user mobility and
the environment. Based on a large scale analysis,
we showed that it is possible to predict impending
handoffs with almost 80% accuracy.

We believe that this is a significant step towards
understanding and predicting the behavior of indi-
vidual handsets. We envision two important future
works. We plan to study how mobile applications
might use this ability to predict handoffs to enhance
user performance or throughput. Also, we plan to
study what kind of benefits would network providers
get if they utilize such information.
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