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Abstract. Knowing when and where people use greenspace is key to our
understanding of urban ecology. The number of cellular phones active in
a geographic area can serve as a proxy for human density in that area.
We are using anonymous records of cellular network activity to study
the spatiotemporal patterns of human density in an urban area. This
paper presents the vision and some early results of this effort. First, we
describe our dataset of six months of activity in the New York metropoli-
tan area. Second, we present a novel technique for estimating network
coverage areas. Third, we describe our approach to analyzing changes
in activity volumes within those areas. Finally, we present preliminary
results regarding changes in human density around Central Park. From
winter to summer, we find that density increases in greenspace areas and
decreases in residential areas.

1 Introduction

It is generally understood that urban greenspace is important to people. Greenspace
provides recreational, health, and aesthetic benefits to citizens, as well as broader
ecological benefits to cities. Understanding the interactions between people and
greenspace is critical to our understanding of urban ecology.

Central to this understanding is knowing the extent to which people make
use of greenspace. For example, knowing the timing, location, and magnitude
of human presence in different green spaces is useful for managing these spaces.
While the type and location of greenspace in urban areas is well documented, we
lack accurate, quantitative measures of when and where people occupy it. Much
of our current knowledge is anecdotal or based on limited survey data.

Cellular telephone networks can provide a wealth of objective information
about human use of urban greenspace. Census data provide detailed maps of
where people sleep, but tell us little about where people are, and are not, during
their waking hours. In contrast, mobile phones are carried by a large portion of
a city’s population and are used throughout the day. A measure of how many
phones are active in which geographic areas can thus serve as a proxy for human
density in those areas.

Proc. of 2nd Workshop on Pervasive Urban Applications (PURBA), June 2012



In this work, we use anonymous records of cellular network activity to quan-
tify the spatial and temporal patterns of human density within a major US
metropolitan area. More specifically, we use counts of voice calls and text mes-
sages handled by cellular antennas as a measure of how many people are in the
geographic areas covered by those antennas. Because of the close-knit spacing
of antennas in urban areas, variations in these counts can shed light on the use
of individual green spaces. We aim to characterize how the density of network
activity changes over time, and how these density patterns relate to greenspace
and microclimate. By aggregating activity into density maps at different times
of day, week, and season, we hope to enhance our understanding of when people
occupy different types of greenspace.

This paper presents the vision and some early results of this effort. First, we
describe our dataset of six months of cellular network activity in the New York
metro area. It contains more than 3 billion samples of activity at a 1-minute
granularity over 6 months. Second, we present a novel technique for estimat-
ing cellular coverage areas. We have extended the previously used tessellation
technique of creating one Voronoi region per cellular tower, and instead create
one finer-grained region per collection of antennas residing on the same tower
and pointing in the same direction. Third, we describe our approach to analyzing
changes in activity volumes within those finer-grained regions. We are using Em-
pirical Orthogonal Function analysis to identify spatial and temporal patterns
of interest. Finally, we present preliminary results regarding changes in human
density in the area around Central Park. From winter to summer, we find that
density increases in greenspace areas and decreases in residential areas.

2 Dataset of Cellular Network Activity

We have gathered from a major US communications service provider a dataset
of anonymous cellular network activity in the New York metro area. We began
by identifying the set of ZIP codes within 50 miles of downtown Manhattan.
We then obtained a list of cellular antennas that were active in those ZIP codes
during the period of our study. We grouped into a sector the set of antennas that
reside on the same cellular tower and that point in the same compass direction.
We thus created a reference table of sector identifiers, locations, and directions.

For each of those sectors and for each minute of each day, we gathered counts
of how many new voice calls and how many text messages were handled by the
antennas in that sector. The contents of our data records are as follows:

Sector Date Hour Minute Voice Calls Started Text Messages Handled

In subsequent analysis, we sum the number of voice calls and text messages to
arrive at a single measure of cellular network activity that we term call volume.
Similarly, we use the term call density to denote call volume per geographic area,
and treat call density as a proxy for human density.

Our current dataset spans the six months between February 1 and July 31,
2011. It contains one record per minute for more than 12,000 sectors, yielding
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more than 3 billion call-volume samples. We are currently gathering data for
a full year, which will allow us to study a fuller range of seasonal and other
temporal effects on human use of green spaces.

We have been careful to preserve privacy throughout this work. In particular,
this study uses only anonymous and aggregate data. There is no personally
identifying information in the data records described above.

3 Tessellation Based on Cellular Sectors

Our cellular network data gives us estimates of human activity levels, but we
need a way to assign that activity to geographic areas. Voronoi tessellation has
been used to associate spatial regions with cellular towers [3, 11]. Each tower is
treated as a point pi on a plane P , and a Voronoi region Ri is associated with
each pi. Each region consists of all points on the plane such that Ri = {x ∈ P :
d(x, pi) ≤ d(x, pk) ∀k} with distance measure d. Euclidian distance is typically
used for d, so that each region consists of points closer to the corresponding
tower than to any other tower.

Voronoi tessellation has several important advantages: simplicity, manageable
computational cost, and ease of interpretation. However, basing the tessellation
only on tower locations results in coarse regions, and therefore coarse assignments
of activity to geographic areas.

We have developed an algorithm that performs a finer-grained tessellation by
making use of antenna directions in addition to tower locations. Typically, each
tower holds multiple antennas that serve various technologies and frequencies,
and that point in various directions. As we did when collecting the dataset
described in Section 2, we group into a sector the set of antennas that reside on
the same tower and that share the same compass direction, or azimuth.

The simplest way to use azimuth information is to further subdivide the
Voronoi regions obtained using only tower locations. Conceptually, we can add
edges that bisect the angles between sector azimuths. In practice, we obtain the
same result by synthesizing virtual positions vi,j for each sector j of tower i as
follows: Let pi be the location of the tower and αi,1..si

the azimuths of the si

sectors. Then

vi,j = pi + ε

[
sinαi,j

− cosαi,j

]
with a small ε > 0 and j ∈ 1, . . . , si. A tessellation using the points vi,j will
be equivalent to dividing the regions obtained from a tessellation using pi by
bisecting azimuth angles up to the error ε. This equivalence follows from the
fact that the points defining the regions induced by pi can only move at most
by the distance ε as pi is perturbed by that amount. Since the regions do not
change by more than ε, the additional points can only partition the regions. Due
to all vi,1..si

being equidistant from pi, the partitioning has to bisect the angle
between two neighboring sectors.

Figure 1 illustrates the result of a regular tessellation based on tower locations
pi (left, locations denoted by red crosses) and our extended tessellation based
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(a) Based on tower locations (b) Based on sectors and their directions

Fig. 1. Voronoi tessellations for a sample 60-km2 area. Red crosses denote cellular
tower locations. Taking into account sectors and their directions produces finer-grained
estimates of network coverage areas.

on sector azimuths with ε = 10−5 (right, added edges drawn as dashed lines).
In both cases we have used a cylindrical projection to maintain near linearity in
the tessellated area, with one degree of latitude as the unit. Therefore, the above
ε corresponds to approximately 1 cm. The tower locations and sector azimuths
are based on the actual configuration of a large US cellular network. The shown
area is an excerpt of approximately 60 km2 from a much larger tessellation.

Making use of the azimuth information clearly improves the granularity of
the tessellation. For the complete New York metro area, the median area of a
Voronoi region resulting from the extended tessellation is roughly one quarter of
the median area resulting from the regular tessellation. At the same time, the
number of regions increases by a factor of 3.5.

In ongoing work, we are experimenting with an adaptive version of our al-
gorithm that chooses a different ε per tower to adjust for different distances
between towers, e.g., closely packed in urban areas vs. farther apart in subur-
ban areas. We also plan to conduct ground-truth experiments to quantify the
accuracy of our estimates of cellular network coverage areas.

In this work, we use our extended tessellation technique to define one Voronoi
region for each of the sectors present in the dataset of cellular network activity
described in the previous section. We therefore approach the next phase of our
study with an estimate of the coverage area of each sector, as well as a measure
of call volume per coverage area per minute.
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4 Empirical Orthogonal Function Analysis

In this study, we seek to quantify the spatiotemporal patterns of call volumes in
order to infer the spatiotemporal distribution of people in the New York metro
area. We can then analyse these patterns in the context of the spatial distribution
of greenspace and temporal variations in weather conditions. We determine the
greenspace distribution using vegetation maps derived from visible and infrared
satellite imagery [8, 9]. We capture weather variations using data from a regional
network of weather stations.

One objective of this coanalysis is to quantify the relationship(s) between
outdoor ambient environmental conditions and the spatiotemporal distribution
of people within the urban area. A primary challenge in this analysis is to distin-
guish between indoor and outdoor activity. A related challenge is to distinguish
between regular patterns of activity (e.g. the dominant daily and weekly cy-
cles) and the variations in these patterns that may be related to environmental
conditions (e.g. indoors on cold days, outdoors on temperate days).

We will approach both of these challenges by mapping deviations from reg-
ular patterns as anomalies in time and space. We will accomplish this mapping
using Empirical Orthogonal Function (EOF) analysis, a tool commonly used to
quantify spatiotemporal patterns in meteorology and oceanography [12]. EOF
analysis is a form of Principal Component (PC) analysis.

We will treat the call volume data as instantaneous spatial snapshots of call
volumes, then analyse the spatiotemporal patterns in these time series of call
volume maps. Our approach is similar to how PC analysis is used to reduce
the dimensionality of multispectral imagery in remote sensing applications (e.g.,
[2, 4, 7]). Because variables in high-dimensional data are often correlated, PC
transforms provide an efficient low-dimensional projection of the uncorrelated
components of the data. The same property applies to temporal dimensions.

The utility of the PC transform for representing spatiotemporal processes
is related to the fact that, for location x and time t, any location-specific pixel
time series Pxt contained in an N -image time series can be represented as a
combination of temporal patterns and their location-specific components as

Pxt =
N∑

i=1

CixFit

where Cix is the spatial Principal Component, Fit is the corresponding tem-
poral Empirical Orthogonal Function, and i is the dimension. The EOFs are
the eigenvectors of the covariance matrix that represent uncorrelated temporal
patterns of variability within the data. The PCs are the corresponding weights
that represent the relative contribution of each EOF to the corresponding series
Pxt at each location x. The relative contribution of each EOF to the total spa-
tiotemporal variance is given by the eigenvalues of the covariance matrix. The
distribution of eigenvalues also gives an indication of the dimensionality of the
data in terms of uncorrelated modes of variance.
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In this study, dimensionality refers to the structure of the spatiotemporal
patterns represented in the data—and their relative magnitude compared to
the stochastic variance. The implicit assumption is that some number, D �
N , of the low-order EOFs and their corresponding PCs represent deterministic
processes, and that the higher-order dimensions represent stochastic variance.
This property allows an observed pixel time series to be represented as a sum of
deterministic and stochastic components in the following way:

Pxt =
D∑

i=1

CixFit + ε

Generally, EOFs are spatial patterns intended to represent spatially contin-
uous modes of variability of physical processes, while the PCs are the weights
representing the temporal contribution of the corresponding spatial patterns [5,
12]. In this study, we reverse the convention so that EOFs represent tempo-
ral patterns and PCs represent spatial weights. We consider daily, weekly, and
seasonal trends that result from deterministic processes such as commuting, as
well as higher-frequency day-to-day variability presumably related to ambient
environmental conditions and isolated transient events. Additional details of the
approach are given by [10].

Our EOF analysis is mathematically related to the methods used in [1] and
[6] to analyze cellular network data. However, we use the EOFs to identify and
remove the dominant temporal periodicities in the data—thereby revealing any
non-periodic spatial patterns related to greenspace and temporal patterns related
to weather. In addition, we are experimenting with the combined use of EOF
analyses and linear mixture models as described by [10].

5 Changes in Human Density around Greenspace

We are continuing to refine the analysis approach described in the previous
section, and to apply it to the dataset described in Section 2. However, we
can already see relevant patterns of human behavior emerge from preliminary
analysis of selected subsets of the data.

As an example of a seasonal change in human activity around greenspace, we
compared Saturday-afternoon call density in central Manhattan between Febru-
ary 12 and July 9, 2011. We summed the per-minute call volumes between 2pm
and 3pm for each sector within this area, then normalized by the sector area to
produce density maps for each date. Figure 2 shows these two maps and their
difference, along with a satellite image that highlights greenspace in the same
area. We produced density surfaces using a 2D thin-plate spline to vary call den-
sity smoothly in space among the unevenly spaced sector centroids. By relaxing
the tension on the spline, we minimized abrupt discontinuities between closely
spaced centroids while preserving the larger-scale variations in density.

The July-minus-February map shows a conspicuous density increase in the
greenspace of southern Central Park, with pronounced decreases in the residen-
tial areas of the Upper East and West Sides adjacent to the park. These changes
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(a) Density: February 12, 2011, 2-3pm (b) Density: July 9, 2011, 2-3pm

(c) Change in density: July minus February (d) Landsat 5: July 7, 2011, 11am

(e) Normalized density scales: Call volume (top, 0 to 1) and
change in volume (bottom, -0.005 to 0.005) per km2.

Fig. 2. Spatio-temporal change in Saturday afternoon call density for central Manhat-
tan. From winter to summer, call density increases in the greenspace of Central Park,
but decreases in residential areas on the Upper East and West Sides. The visible-
infrared satellite image shows parks and other greenspace as shades of green.

are consistent with the tendency of many New Yorkers to spend summer week-
ends outside the city, while many of those who remain visit Central Park.

Our analysis strategy for the complete New York metro area is based on
the identification of spatiotemporal regularities and anomalies. We will use EOF
analysis to quantify the spatial form of the dominant daily and weekly cycles
associated with commuter migration, as well as any seasonal components that
emerge in the low-order dimensions. Once identified, we will remove these com-
ponents by inverse transformation of the remaining dimensions to produce a
spatiotemporal representation of any anomalies that are distinct from the dom-
inant periodicities. We can then directly compare the spatial components of
these anomalies to maps of greenspace and thermal microclimate. We can like-
wise compare the temporal components of the anomalies to time series of air
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temperature, precipitation, and humidity, in order to quantify whatever rela-
tionships may exist between the residual call volumes and the spatiotemporal
variations in microclimate and ambient environmental conditions.

6 Conclusion

We have presented our ongoing exploration of how people use urban greenspace.
We base our study on anonymous and aggregate records of cellular network ac-
tivity in the New York metropolitan area. We developed a new tessellation tech-
nique to estimate the geographic coverage areas of individual cellular sectors. We
are applying Empirical Orthogonal Function analysis to identify spatiotemporal
patterns in the volume of cellphone activity in those areas. Our preliminary re-
sults indicate that our approach identifies relevant patterns of human behavior.
We are continuing to refine our approach and apply it to larger-scale datasets.
We also plan to carry out ground-truth studies to validate our results.
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