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Abstract

We present the design and implementation of a sys-
tem that enables trusted computing for an unlimited num-
ber of virtual machines on a single hardware platform.
To this end, we virtualized the Trusted Platform Module
(TPM). As a result, the TPM’s secure storage and crypto-
graphic functions are available to operating systems and
applications running in virtual machines. Our new facil-
ity supports higher-level services for establishing trustin
virtualized environments, for example remote attestation
of software integrity.

We implemented the full TPM specification in soft-
ware and added functions to create and destroy virtual
TPM instances. We integrated our software TPM into
a hypervisor environment to make TPM functions avail-
able to virtual machines. Our virtual TPM supports sus-
pend and resume operations, as well as migration of a
virtual TPM instance with its respective virtual machine
across platforms. We present four designs for certificate
chains to link the virtual TPM to a hardware TPM, with
security vs. efficiency trade-offs based on threat models.
Finally, we demonstrate a working system by layering an
existing integrity measurement application on top of our
virtual TPM facility.

1 Introduction

Hardware virtualization has enjoyed a rapid resurgence
in recent years as a way to reduce the total cost of owner-
ship of computer systems [5]. This resurgence is spe-
cially apparent in corporate data centers such as web
hosting centers, where sharing each hardware platform
among multiple software workloads leads to improved
utilization and reduced operating expenses.

However, along with these cost benefits come added
security concerns. Workloads that share the same plat-
form must often be kept separate for a multitude of rea-
sons. For example, government regulations may require

an investment bank to maintain a strict separation be-
tween its market analysis and security underwriting de-
partments, including their respective information pro-
cessing facilities. Similarly, commercial interests may
dictate that the web sites of competing businesses not
have access to each other’s data. In addition, concerns
about malicious software subverting normal operations
become specially acute in these shared hardware envi-
ronments. For example, a remote client of a medical ser-
vices site would like to determine that the server is not
running corrupted software that will expose private infor-
mation to a third party or return wrong medical informa-
tion. The increasing use of virtualization thus gives rise
to stringent security requirements in the areas of software
integrity and workload isolation.

The combination of a hardware-based root of trust
such as the Trusted Platform Module (TPM) [23],
and a virtual machine-based system such as Xen [4],
VMware [26], or PHYP [14], is exceedingly well suited
to satisfying these security requirements. Virtual ma-
chine monitors, or hypervisors, are naturally good at iso-
lating workloads from each other because they mediate
all access to physical resources by virtual machines. A
hardware root of trust is resistant to software attacks and
provides a basis for reasoning about the integrity of all
software running on a platform, from the hypervisor it-
self to all operating systems and applications running in-
side virtual machines.

In particular, the TPM enables remote attestation by
digitally signing cryptographic hashes of software com-
ponents. In this context, attestation means to affirm that
some software or hardware is genuine or correct. TPM
chips are widely deployed on laptop and desktop PCs,
and are becoming increasingly available on server-class
machines such as the IBM eServer x366 [12].

Virtualizing the TPM is necessary to make its capabil-
ities available to all virtual machines running on a plat-
form. Each virtual machine with need of TPM function-
ality should be made to feel that it has access to its own



private TPM, even though there may be many more vir-
tual machines than physical TPMs on the system (typi-
cally there is a single hardware TPM per platform). It is
thus necessary to create multiple virtual TPM instances,
each of which faithfully emulates the functions of a hard-
ware TPM.

However, virtualizing the TPM presents difficult chal-
lenges because of the need to preserve its security prop-
erties. The difficulty lies not in providing the low-level
TPM command set, but in properly supporting higher-
level security concepts such as trust establishment. In
particular, it is necessary to extend the chain of trust from
the physical TPM to each virtual TPM via careful man-
agement of signing keys and certificates. As a result,
some application and operating system software that re-
lies on TPM functionality needs to be made aware of se-
mantic differences between virtual and physical TPMs,
so that certificate chains can be correctly built and evalu-
ated, and trust chains correctly established and followed.

An additional challenge is the need to support migra-
tion of a virtual TPM instance between hardware plat-
forms when its associated virtual machine migrates. The
ability to suspend, migrate, and resume virtual machines
is an important benefit of hardware virtualization. For the
virtual TPM, migration requires protecting the secrecy
and integrity of data stored in a virtual TPM instance dur-
ing the transfer between platforms, and re-establishing
the chain of trust on the new platform.

This paper presents the design and implementation of
a virtual TPM (vTPM) facility. This work makes the fol-
lowing contributions:

• It identifies the requirements for a vTPM, including
those related to migration between hardware plat-
forms.

• It introduces a vTPM architecture that meets these
requirements, including extensions to the standard
TPM command set and a protocol for secure vTPM
migration.

• It describes our implementation of this vTPM ar-
chitecture on Xen, including support for remote
integrity attestation of the complete system: boot
loader, hypervisor, vTPM subsystem, operating sys-
tems, and applications.

• It discusses four alternative schemes for certifying
a vTPM’s security credentials, including the trade-
offs involved in choosing between them.

• It demonstrates that our vTPM facility works by
running an existing TPM application inside Xen vir-
tual machines.

This work can also serve as a template for how to
virtualize other security-related devices such as secure

co-processors. Virtualizing such devices presents similar
challenges to those outlined above for TPMs.

The rest of this paper is organized as follows. Sec-
tion 2 introduces background concepts useful for under-
standing the ensuing material. Section 3 presents the re-
quirements on a virtual TPM facility. Sections 4, 5, and
6 respectively describe the design, the implementation,
and a sample application of our vTPM facility. Section 7
discusses open issues, Section 8 covers related work, and
Section 9 concludes the paper.

2 Background

In this section we give some background on the two
technologies that are basic to understanding this paper:
the Trusted Platform Module (TPM) and the Virtual Ma-
chine Monitor (VMM).

2.1 The Trusted Platform Module

The TPM is a security specification defined by the
Trusted Computing Group [23]. Its implementation is
available as a chip that is physically attached to a plat-
form’s motherboard and controlled by software running
on the system using well-defined commands [11]. It pro-
vides cryptographic operations such as asymmetric key
generation, decryption, encryption, signing and migra-
tion of keys between TPMs, as well as random number
generation and hashing. It also provides secure storage
for small amounts of information such as cryptographic
keys. Because the TPM is implemented in hardware and
presents a carefully designed interface, it is resistant to
software attacks [3].

Of particular interest is the Platform Configuration
Register (PCR)extensionoperation. PCRs are initialized
at power up and can only be modified by reset or ex-
tension. The PCR extension function cryptographically
updates a PCR using the following function:

Extend(PCRN , value) = SHA1(PCRN ||value)

The cryptographic properties of the extension opera-
tion state that it is infeasible to reach a certain PCR state
through two different sequences of values. SHA1 refers
to the Secure Hash Algorithm standard [19]. The|| oper-
ation represents a concatenation of two byte arrays.

PCR extensions are used during the platform boot pro-
cess and start within early-executed code in the Basic In-
put/Output System (BIOS) that is referred to as the Core
Root of Trust for Measurement (CRTM) [24]. Hash val-
ues of byte arrays representing code or configuration data
are calculated, ormeasured, and PCRs are extended with
these values. A final PCR value represents this accu-
mulation of a unique sequence of measurements. Along



with a sequential list of individual measurements and ap-
plications’ names and information about measured con-
figuration data, PCR values are used to decide whether a
system can be trusted. A transitive trust model is imple-
mented that hands off the measuring from the BIOS [24]
to the boot loader [18] and finally to the operating sys-
tem. Procedures have also been developed for operating
systems to measure launched applications, scripts and
configuration files [21].

Besides the aforementioned cryptographic operations
it is possible toseal information against the state of the
TPM, where its state is represented through a subset of
PCRs. Sealed information is encrypted with a public key
and can only be decrypted if the selected PCRs are in the
exact state that they were at the time of sealing.

There are a number of signing keys associated with a
TPM. Each TPM can be identified by a unique built-in
key, the Endorsement Key (EK), which stands for the va-
lidity of the TPM [10]. The device manufacturer should
provide a certificate for the EK. Related to the EK are At-
testation Identity Keys (AIKs). An AIK is created by the
TPM and linked to the local platform through a certifi-
cate for that AIK. This certificate is created and signed
by a certificate authority (CA). In particular, aprivacy
CA allows a platform to present different AIKs to dif-
ferent remote parties, so that it is impossible for these
parties to determine that the AIKs are coming from the
same platform. AIKs are primarily used during quote
operations to provide a signature over a subset of PCRs
as well as a 160-bit nonce. Quotes are delivered to re-
mote parties to enable them to verify properties of the
platform.

2.2 Virtual Machine Monitors

VMMs [8], also known as hypervisors, allow multiple
operating systems to simultaneously run on one machine.
A VMM is a software layer underneath the operating sys-
tem that meets two basic requirements:

• It provides a Virtual Machine (VM) abstraction that
models and emulates a physical machine.

• It provides isolation between virtual machines.

The basic responsibility of a VMM is to provide CPU
time, memory and interrupts to each VM. It needs to set
up the page tables and memory management unit of the
CPU such that each VM runs in its own isolated sand-
box. The hypervisor itself remains in full control over
the resources given to a VM. During the boot process of
a VMM, often an initial virtual machine is started that
serves as a management system for starting further vir-
tual machines.

Depending on the fidelity of the emulation of a physi-
cal machine, it may be necessary to make modifications
to an operating system for it to run on a VMM. If modifi-
cations are required the environment is said to bepar-
avirtualized, otherwise the VMM is said to provide a
fully virtualizedenvironment.

3 Requirements

A virtual TPM should provide TPM services to each vir-
tual machine running on top of a hypervisor. The re-
quirements discussed in this section can be summarized
as follows:

1. A virtual TPM must provide the same usage model
and TPM command set to an operating system run-
ning inside a virtual machine as a hardware TPM
provides to an operating system running directly on
a hardware platform.

2. A strong association between a virtual machine and
its virtual TPM must be maintained across the life
cycle of virtual machines. This includes migration
of virtual machines together with their associated
virtual TPMs from one physical machine to another.

3. A strong association between the virtual TPM and
its underlying trusted computing base (TCB) must
be maintained.

4. A virtual TPM must be clearly distinguishable from
a hardware TPM because of the different security
properties of the two types of TPM.

As much software as possible that was originally writ-
ten to interact with a hardware TPM should run unmodi-
fied with a virtual TPM. It should remain unaware of the
fact that it is communicating with a software implemen-
tation of a TPM in a virtual environment. An example
of software that should remain unmodified is the TCG
Software Stack (TSS) [25] that issues low-level TPM re-
quests and receives low-level TPM responses on behalf
of higher-level applications.

The requirement that software be unaware that it is us-
ing emulated devices is basic to virtualization and has al-
ready been achieved for a wide range of devices found
in modern computers. Open-source software such as
QEmu [1], as well as proprietary products like VMWare
Workstation [26], have been successful in emulating
machine environments for personal computers. They
provide transparent emulation for timers, interrupt con-
trollers, the PCI bus, and devices on that bus.

However, as a security device the TPM presents new
and challenging issues that preclude fully transparent vir-
tualization. One challenge arises because modern virtual



machine monitors provide suspend and resume capabil-
ities. This enables a user to freeze the state of an oper-
ating system and resume it at a later point, possibly on a
different physical machine. A virtual TPM implementa-
tion must support the suspension and resumption of TPM
state, including its migration to another system platform.
During normal operation of the virtual TPM, as well as
during and after these more sophisticated lifecycle oper-
ations, the association between the virtual TPM and its
virtual machine must be securely maintained such that
secrets held inside the virtual TPM cannot be accessed
by unauthorized parties or other virtual machines.

Another challenge is to maintain the association of a
virtual TPM to its underlying trusted computing base.
PC manufacturers may issue a certificate for the TPM
endorsement key (EK) that states that the TPM hardware
is tightly coupled to the motherboard and correctly em-
bedded into the BIOS for management. A challenger,
validating a digital signature from such a TPM, can thus
determine the correct embedding and operation of the re-
mote TPM chip and establish the environmental security
properties of the hardware TPM. In a virtualized environ-
ment, each operating system communicates with a vir-
tual TPM that may be running as a user-space process
inside its own virtual machine. The association of such a
TPM with its underlying software and hardware platform
is not only loose but also subject to change, e.g., dur-
ing migration. Tracking this changing trusted computing
base forms one major challenge in virtualizing a hard-
ware TPM. Maintaining the ability of the virtual TPM
to attest to its mutable trusted computing base forms an-
other major challenge. It is necessary to enable remote
parties that have established trust in the initial environ-
ment to also establish trust in the vTPM environment at
a later point in time.

For example, the strong binding of TPM credentials
to those of the hardware platform is important to chal-
lenging parties during remote attestation. The challenger
must follow the trust chain from the target platform’s
hardware TPM through a virtual TPM and into the run-
time environment of the associated virtual machine.

Further, since software TPM implementations do not
usually offer the same security properties as hardware
TPM implementations, the different types of TPMs
should be distinguishable for remote parties relying on
a TPM’s correct functioning. A virtualized TPM’s cer-
tificates can be used to give an interested party enough
information to conclude relevant properties of the com-
plete software, firmware, and hardware environment on
which this TPM’s correct operation depends. In practice,
this can be realized by the certificate issuer embedding
special attributes into the certificate, and the interested
party validating the certificate and translating these at-
tributes during remote attestation of security properties.

Interestingly, as will become clear during our exposition,
a software TPM can be as secure as a hardware TPM .

In summary, virtualizing the TPM is not achieved by
merely providing TPM functionality to a virtual machine
through device emulation. A virtual TPM must also pro-
vide the means for outside parties to establish trust in a
larger software environment than is the case with hard-
ware TPMs. It must also enable reestablishment of trust
after a virtual machine is migrated to another platform.
These requirements for providing virtual TPM function-
ality will be used as a guideline for the following sections
on architecture and implementation, as well as our final
discussion.

4 Architecture

We designed a virtual TPM facility in software that pro-
vides TPM functionality to virtual machines. This sec-
tion first describes the structure of the vTPM and the
overall system design. It proceeds with describing our
extensions to the TPM 1.2 command set to support vir-
tualization of the TPM. Then it introduces our protocol
for virtual TPM migration and concludes with consider-
ing security aspects of the vTPM platforms and run-time
environments involved in the migration.

Figure 1 illustrates the vTPM building blocks and their
relationship. The overall vTPM facility is composed
of a vTPM manager and a number of vTPM instances.
Each vTPM instance implements the full TCG TPM 1.2
specification [11]. Each virtual machine that needs
TPM functionality is assigned its own vTPM instance.
The vTPM manager performs functions such as creating
vTPM instances and multiplexing requests from virtual
machines to their associated vTPM instances.

Virtual machines communicate with the vTPM using a
split device-driver model where a client-side driver runs
inside each virtual machine that wants to access a virtual
TPM instance. The server-side driver runs in the virtual
machine hosting the vTPM.

4.1 Associating vTPM Instances with
their Virtual Machines

As shown in Figure 1, multiple virtual machines send
TPM commands to the virtual TPM facility. A diffi-
culty arises because it cannot be determined from the
content of a TPM command from which virtual machine
the command originated, and thereby to which virtual
TPM instance the command should be delivered. Our
solution is for the server-side driver to prepend a 4-byte
vTPM instance identifier to each packet carrying a TPM
command. This number identifies the vTPM instance to
which a virtual machine can send commands. The in-
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Figure 1: vTPM Architecture

stance number is assigned by the virtual TPM when the
vTPM instance is created.

Every VM must associate with a unique vTPM in-
stance. The vTPM instance number is prepended on the
server side so that virtual machines cannot forge packets
and try to get access to a vTPM instance that is not asso-
ciated with them. A command’s originating virtual ma-
chine can be determined from the unique interrupt num-
ber raised by each client-side driver.

Since a TPM holds unique persistent state with se-
cret information such as keys, it is necessary that a vir-
tual machine be associated with its virtual TPM instance
throughout the lifetime of the virtual machine. To keep
this association over time, we maintain a list of virtual-
machine-to-virtual-TPM-instance associations.

Figure 1 shows our architecture where TPM function-
ality for all VMs is provided by a virtual TPM running in
the management VM. TPM functionality for this VM is
provided by the hardware TPM, and is used in the same
way as in a system without a hypervisor where the oper-
ating system owns the hardware TPM.

A variation of this architecture is shown in Figure 2
where virtual TPM functionality is provided by an ex-
ternal secure coprocessor card that provides maximum
security for sensitive data, such as private keys, through
a tamper-responsive environment. Here the first VM is
the owner of this hardware and uses one virtual TPM
instance for its own purposes. All other instances are
reserved for usage by other virtual machines. A proxy
process forwards TPM messages between the server-side
driver and the external card.
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Figure 2: vTPM running inside a Secure Co-processor.

4.2 The Root vTPM Instance

Our design was driven by the goal of having a virtual
TPM implementation that can be run on an external co-
processor card as well as executed as a process running
within a virtual machine. We designed the virtual TPM
such that the interaction of applications with either im-
plementation would be the same. New commands and
APIs that we introduce should work the same for both
implementations. Considerations regarding reducing the
trusted computing base of the environment hosting the
virtual TPM did not directly influence the design, al-
though the intention is to have a virtual machine that is
dedicated exclusively to providing virtual TPM function-
ality.

Further, modern hypervisors support advanced fea-
tures such as virtual machine hibernation and migration
from one physical platform to another. The straightfor-
ward approach to supporting such features is to hibernate
and migrate a virtual TPM instance along with its as-
sociated virtual machine, thus preserving existing mea-
surements and avoiding the complexity of remeasuring
running software in a new environment and accounting
for the loss of measurements representing software that
was loaded but is no longer running. However, the virtual
TPM migration process must offer more security guaran-
tees for the virtual TPM instance state than is usually pro-
vided for an operating system image that is being trans-
ferred. The virtual TPM migration process must guaran-
tee that any vTPM instance state in transit is not subject
to modification, duplication, or other compromise.

This set of requirements led us to design a virtual
TPM as a TPM capable of spawning new vTPM child
instances. Having an always available vTPMroot in-



stanceprovides an entity that has cryptographic capabil-
ities for generating asymmetric keys, handling encryp-
tion and decryption of data, and migration of asymmet-
ric keys between virtual TPMs. The ability to handle
keys and encrypt data with them enables us to encrypt
the state of a vTPM instance when migrating it. The
virtual TPM’s ability to migrate keys to another virtual
TPM makes it possible to exchange encrypted data be-
tween virtual TPMs.

Since the ability to spawn – and generally to manage
– new virtual TPM instances is a fairly powerful feature,
this capability should only be accessible to the owner of
the root instance. The administrator of the initial vir-
tual machine, who has the ability to start new virtual ma-
chines, would own this capability. We designed all TPM
command extensions to require owner authorization in
the same way as some of the existing TPM commands
do. In effect, the TPM verifies that such command blocks
are authorized with the owner’s password.

We introduced the concept of a privileged vTPM in-
stance. A privileged vTPM instance can spawn and man-
age child vTPM instances. Since being a privileged in-
stance is an inheritable property, an instance may pass
this privilege on to its own children. Using this inher-
itance scheme, we can support building a hierarchy of
vTPMs in parallel to a hierarchy of virtual machines
where each virtual machine is given the privilege of start-
ing other virtual machines.

4.3 Independent Key Hierarchies

The TPM specification demands that a TPM establish a
storage root key (SRK) as the root key for its key hi-
erarchy. Every key that is generated has its private key
encrypted by its parent key and thus creates a chain to the
SRK. In our virtual TPM we create anindependent key
hierarchy per vTPM instance and therefore unlink ev-
ery vTPM instance from the key hierarchy of a possible
hardware TPM. This has the advantage that key genera-
tion is much faster since we do not need to rely on the
hardware TPM for this. It also simplifies vTPM instance
migration.

Similarly, we generate an endorsement key (EK) per
vTPM instance. This enables TPM commands that rely
on decrypting information with the private part of the EK
to also work after a virtual TPM has migrated.

If the SRK, EK or any other persistent data of vir-
tual TPMs are written into persistent memory, they are
encrypted with a symmetric key rooted in the hardware
TPM by for example sealing it to the state of the hard-
ware TPM’s PCRs during machine boot, or by encrypt-
ing it using a password-protected key. We therefore earn
the flexibility of managing each virtual TPM’s key hier-
archy independently. In addition, by using file-level data

encryption we mitigate the cost of not directly coupling
the key hierarchy of a virtual TPM instance to that of the
hardware TPM.

4.4 Extended Command Set

In order to realize our design of a virtual TPM, we ex-
tended the existing TPM 1.2 command set with addi-
tional commands in the following categories.

• Virtual TPM Management commands

CreateInstance

DeleteInstance

SetupInstance

• Virtual TPM Migration commands

GetInstanceKey / SetInstanceKey

GetInstanceData / SetInstanceData

• Virtual TPM Utility commands

TransportInstance

LockInstance / UnlockInstance

ReportEnvironment

TheVirtual TPM Management commandsmanage the
life-cycle of vTPM instances and provide functions for
their creation and deletion. TheSetupInstancecommand
prepares a vTPM instance for immediate usage by the
corresponding virtual machine and extends PCRs with
measurements of the operating system kernel image and
other files involved in the boot process. This command
is used for virtual machines that boot without the support
of a TPM-enabled BIOS and boot loader, which would
otherwise initialize the TPM and extend the TPM PCRs
with appropriate measurements.

TheVirtual TPM Migration commandssupport vTPM
instance migration. We implemented a secure virtual
TPM instance migration protocol that can securely pack-
age the state of a virtual TPM instance and migrate it to
a destination platform. Our extended commands enforce
that the content of a vTPM instance is protected and that
a vTPM instance can only be migrated to one target plat-
form destination, thus preventing duplication of a vTPM
instance and ensuring that a virtual TPM is resumed in
association with its VM.

One of theVirtual TPM Utility commandsoffers a
function for routing a limited subset of TPM commands
from a vTPM parent instance to one of its child instances.
This command works similar to IP tunneling, where an
embedded packet is unwrapped and then routed to its
destination. Embedding a command is useful since the
association of a virtual machine to a privileged virtual
TPM does not allow direct communication with a child



vTPM instance. For example, we use this command to
create an endorsement key for a virtual TPM after the
child instance has been created and before it is used by its
associated virtual machine. Other functions in the util-
ity category include locking a vTPM instance to keep its
state from being altered while its state is serialized for
migration, and unlocking it to make it available for use
after migration has completed.

4.5 Virtual TPM Migration

Since vTPM instance migration is one of the most im-
portant features that we enabled through the command
set extension, we explain how it works in more detail.
The virtual TPM migration procedure is depicted in Fig-
ure 3.

We enabled vTPM instance migration using asym-
metric and symmetric keys to encrypt and package TPM
state on the source virtual TPM and decrypt the state
on the destination virtual TPM. We based vTPM migra-
tion on migrateable TPM storage keys, a procedure that
is supported by the existing TPM standard.

The first step in our vTPM instance migration proto-
col is to create an empty destination vTPM instance for
the purpose of migrating state. The destination virtual
TPM generates and exports a unique identifier (Nonce).
The source vTPM is locked to the same Nonce. All TPM
state is exported with the Nonce, and the Nonce is vali-
dated before import. This enforces uniqueness of the vir-
tual TPM and prevents TPM state from being migrated
to multiple destinations.

The next step involves marshaling the encrypted state
of the source vTPM. This step is initiated by sending to
the source vTPM a command to create a symmetric key.
The key is encrypted with a parent TPM instance stor-
age key. The blobs of state encrypted with a symmetric
key are then retrieved from the source vTPM. This in-
cludes NVRAM areas, keys, authorization and transport
sessions, delegation rows, counters, owner evict keys,
and permanent flags and data. While the state is col-
lected, the TPM instance is locked so the state cannot be
changed by normal usage. After each piece of state infor-
mation has been serialized, an internal migration digest
is updated with the data’s hash and the piece of state in-
formation becomes inaccessible. The migration digest
is embedded into the last piece of state information and
serves for validation on the target side.

To recreate the state of the virtual TPM on the desti-
nation platform, the storage key of the vTPM parent in-
stance (used to encrypt the symmetric key used to protect
the vTPM instance state) must be migrated to the desti-
nation vTPM parent instance. After the decryption of the
symmetric key, the migrating vTPM’s state is recreated
and the migration digest recalculated. To detect pos-

sible Denial of Service (DoS) attacks where untrusted
software involved in migration alters or omits state, op-
eration of the vTPM instance can only resume if the cal-
culated migration digest matches the transmitted one.

Support for Live Migration Modern virtual machine
monitors supportlive migration[2] of virtual machines
from one platform to another. Live migration tries to
shorten downtimes by replicating the running system’s
image on a destination machine and switching execution
to that machine once all pages have been replicated. Live
migration can be supported with our virtual TPM migra-
tion protocol, but will in the worst case extend the down-
time of the migrated system by the time it takes to com-
plete an outstanding TPM operation, transfer the vTPM
state, and recreate it on the destination platform.

4.6 Linking a vTPM to its TCB

Both architectures we introduced in Section 4.1 – a
vTPM hosted in a virtual machine or in a secure copro-
cessor – provide TPM functionality to virtual machines.
It is therefore possible to enable an integrity measure-
ment facility [13] in each virtual machine and record ap-
plication measurements in the virtual TPM. However, it
is necessary that a challenger can establish trust in an en-
vironment which consists of more than the content of the
virtual machine. The reason is that each operating sys-
tem is running inside a virtual machine that is fully con-
trolled by the hypervisor. Furthermore, a virtual TPM
can be running as a process inside a VM whose own
execution environment must be trusted. Therefore it is
necessary that attestation support within the virtualized
environment not only allows a challenger to learn about
measurements inside the virtual machine, but also about
those of the environment that provides virtual TPM func-
tionality. In addition, these measurements must include
the hypervisor and the entire boot process.

Our architecture therefore merges the virtual TPM-
hosting environment with that of the virtual machine by
providing two different views of PCR registers. Figure 4
shows these two views. The lower set of PCR registers
of a vTPM show the values of the hardware TPM and the
upper ones reflect the values specific to that vTPM. This
way, a challenger can see all relevant measurements. The
providers of the measurements extended into the differ-
ent PCRs –BIOS, boot loader, and operating system– are
denoted beside the PCRs. BIOS measurements include
measurements of the boot stages and various hardware
platform configurations. The boot loader measures, for
example, the hypervisor and its configuration, the vir-
tual machine monitor operating system kernel, initrd, and
configuration. Then the VMM takes over and measures
the dynamically activated VMM environment, such as
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Figure 3: Virtual TPM Migration Protocol

the vTPM manager, and other components on which the
correct functioning of the virtual environment and the
vTPM depends.

As previously mentioned, the certificate for a virtual
TPM instance does not necessarily stand for the same
security guarantees as that of a hardware TPM. If a chal-
lenger decides that the security guarantees of the virtual
TPM are not sufficient he can directly challenge the vir-
tual machine owning the hardware TPM to verify the ba-
sic measurements including the one of the virtual TPM.
Section 7.2 describes how certificates can be issued to
mitigate this problem.

5 Implementation

In this section we present our implementation of virtual
TPM support for the Xen hypervisor [27]. We expect that
an implementation for other virtualization environments
would be similar in the area of virtual TPM management,
but will differ in the particular management tools and
device-driver structure.

We have implemented the two previously discussed
solutions of a virtual TPM. One is a pure software so-
lution targeted to run as a process in user space inside a
dedicated virtual machine (Figure 1) and the other runs
on IBM’s PCI-X Cryptographic Coprocessor (PCIXCC)
card [15] (Figure 2).

5.1 Implementation for Xen

Xen is a VMM for paravirtualized operating systems that
can also support full virtualization by exploiting emerg-
ing hardware support for virtualization. In Xen-speak,
each virtual machine is referred to as adomain. Domain-
0 is the first instance of an OS that is started during sys-
tem boot. In Xen version 3.0, domain-0 owns and con-
trols all hardware attached to the system. All other do-
mains areuser domainsthat receive access to the hard-
ware usingfrontend device driversthat connect toback-
end device driversin domain-0. Domain-0 effectively
proxies access to hardware such as network cards or hard
drive partitions.

We have implemented the following components for
virtual TPM support under the Xen hypervisor:

• Split device-driver pair for connecting domains to a
virtual TPM

• Scripts to help connect virtual machines to virtual
TPM instances

• Virtual TPM management tools

• Virtual TPM-specific extensions to Xen’s manage-
ment tools (e.g., xend, xm)

• Full TPM 1.2 implementation extended with our
virtual TPM command set
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Figure 4: Mapping of Virtual TPM to Hardware TPM PCRs

We have extended the Xen hypervisor tools to sup-
port virtual TPM devices. xm, the Xen Management
tool, parses the virtual machine configuration file and,
if specified, recognizes that a virtual TPM instance must
be associated with a virtual machine.xend, the Xen Dae-
mon, makes entries in thexenstore[22] directory that in-
dicate in which domain the TPM backend is located. Us-
ing this information, the TPM frontend driver in the user
domain establishes a connection to the backend driver.
During the connection phase, the backend driver triggers
the Linux hotplug daemon that then launches scripts for
connecting the virtual TPM instance to the domain.

Within our virtual TPM hotplug scripts, we need to
differentiate whether the virtual machine was just created
or whether it resumed after suspension. In the former
case, we initialize the virtual TPM instance with a reset.
In the latter case, we restore the state of the TPM from
the time when the virtual machine was suspended. Inside
the scripts we also administer a table of virtual-machine-
to-virtual-TPM-instance associations and create new vir-
tual TPM instances when no virtual TPM exists for a
started virtual machine.

Figure 5 shows an example of a virtual machine con-
figuration file with the virtual TPM option enabled. The
attributes indicate in which domain the TPM backend
driver is located and which TPM instance is preferred
to be associated with the virtual machine. To eliminate

configuration errors, the final decision on which virtual
TPM instance is given to a virtual machine is made in the
hotplug scripts and depends on already existing entries in
the associations table.

kernel = “/boot/vmlinuz-2.6.12-xen”

ramdisk = “/boot/vmlinuz-2.6.12-xen.img”

memory = 256

name = “UserDomainWithTPM”

vtpm= [‘backend=0, instance=1’]

Figure 5: Virtual Machine Configuration File with vTPM
Option

We have implemented the Xen-specific frontend driver
such that it plugs into the generic TPM device driver that
is already in the Linux kernel. Any application that wants
to use the TPM would communicate with it through the
usual device, /dev/tpm0. The backend driver is a com-
ponent that only exists in the virtualized environment.
There we offer a new device, /dev/vtpm, through which
the virtual TPM implementation listens for requests.

Our driver pair implements devices that are connected
to a Xen-specific bus for split device drivers, calledxen-
bus. The xenbus interacts with the drivers by invoking



their callback functions and calls the backend driver for
initialization when a frontend has appeared. It also no-
tifies the frontend driver about the request to suspend or
resume operation due to suspension or resumption of the
user domain.

Suspension and resumption is an important issue for
our TPM frontend driver implementation. The existing
TPM protocol assumes a reliable transport to the TPM
hardware, and that for every request that is sent a guar-
anteed response will be returned. For the vTPM driver
implementation this means that we need to make sure
that the last outstanding response has been received by
the user domain before the operating system in that do-
main suspends. This avoids extension of the basic TPM
protocol through a more complicated sequence number-
based protocol to work around lost packets.

We use Xen’s existing shared memory mechanism
(grant tables[6]) to transfer data between front- and
back-end driver. Initially a page is allocated and shared
between the front and back ends. When data is to be
transmitted they are copied into pages and an access
grant to the pages is established for the peer domain. Us-
ing an event channel, an interrupt is raised in the peer
domain which then starts reading the TPM request from
the page, prepends the 4-byte instance number to the re-
quest and sends it to the virtual TPM.

The virtual TPM runs as a process in user space in
domain-0 and implements the command extensions we
introduced in Section 4.4. For concurrent processing
of requests from multiple domains, it spawns multiple
threads that wait for requests on /dev/vtpm and a local
interface. Internal locking mechanisms prevent multiple
threads from accessing a single virtual TPM instance at
the same time. Although a TPM driver implementation
in a user domain should not allow more than one unan-
swered TPM request to be processed by a single TPM,
we cannot assume that every driver is written that way.
Therefore we implemented the locking mechanism as a
defense against buggy TPM drivers.

The virtual TPM management tools implement com-
mand line tools for formatting and sending virtual TPM
commands to the virtual TPM over its local interface.
Requests are built from parameters passed through the
command line. We use these tools inside the hotplug
scripts for automatic management of virtual TPM in-
stances.

5.2 Implementation for the PCI-X Crypto-
graphic Coprocessor

IBM’s PCIXCC secure coprocessor is a programmable
PCI-X card that offers tamper-responsive protection. It
is ideally suited for providing TPM functionality in
security-sensitive environments where higher levels of

assurance are required, e.g., banking and finance.
The code for the virtual TPM on the card differs only

slightly from that which runs in a virtual machine. The
main differences are that the vTPM on the card receives
its commands through a different transport interface, and
it uses built-in cryptographic hardware for acceleration
of vTPM operations. To use the card in the Xen envi-
ronment, a process in user space must forward requests
between the TPM backend driver and the driver for the
card. This is the task of the proxy in Figure 2.

Table 1 describes the properties that can be achieved
for TPM functionality based on the three implementation
alternatives: hardware TPM, virtual TPM in a trusted vir-
tual machine, and virtual TPM in a secure coprocessor.

6 Sample Application

We ran an existing TPM application to show that our vir-
tual TPM implementation provides correct TPM func-
tionality to virtual machines. As a sample application
we chose IBM’s open-source Integrity Measurement Ar-
chitecture (IMA) for the Linux operating system [13].

IMA provides to a remote system verifiable evidence
of what software is running on a measured system. It
maintains a list of hash values covering all executable
content loaded into a system since startup, including ap-
plication binaries. It brings together measurements made
by the BIOS, boot loader and OS, and it offers an inter-
face to retrieve these hash values from a remote system.
IMA returns its list of measurements as well as a quote
of current PCR values signed by the TPM. The signed
quote from the TPM proves the integrity of the measure-
ments. The remote system can then compare the mea-
surements against known values to determine what soft-
ware was loaded on the measured system.

IMA was originally written to run in a non-virtualized
environment, where the Linux kernel has direct access to
a hardware TPM. As a test of our vTPM facility, we ran
IMA in a Xen virtual machine with access to a vTPM
instance.

The complete attestation sequence in our virtualized
environment is as follows. The virtual TPM runs as a
process in Xen’s management virtual machine, domain-
0. We boot the system using a trusted boot loader,
Trusted GRUB [9, 18]. We measure the Xen hypervisor
executable, the domain-0 kernel and initial RAM disk,
as well as the initial Xen access control policy [20], and
extend a PCR in the hardware TPM with these measure-
ments. The resulting hardware PCR value thus attests
to the integrity of the vTPM’s trusted computing base
(TCB), namely the hypervisor plus the management vir-
tual machine.

When a user virtual machine starts, we measure its
kernel image and initial RAM disk, and extend a PCR



ImplementationProperties
Hardware TPM PCIXCC Trusted VM TPM

HW Tamper no protection responsive no protection

SW Tamper
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protected
crypto protected

(signed software)
SW protected

TPM TCB TPM chip, BIOS
tamper responsive

environment, signed
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vTPM VM, hypervisor

Platform-Binding physical (e.g., soldering) PCI-X bus logical (H/W TPM or BIOS)

OS-Binding
BIOS or hypervisor

(if VM-owned)
hypervisor hypervisor

Support OS 1 n n
Cost in USD 1 > 1,000 0

Table 1: Comparison of TPM Implementations

in the virtual TPM with these measurements. This se-
quence of measurements is part of the setup process of
the vTPM instance (see Section 4.4). As the user vir-
tual machine continues to run, the IMA-enhanced kernel
in that virtual machine also extends a virtual PCR with
measurements of every application that is loaded.

IMA attests to the integrity of both the vTPM TCB
and the user virtual machine by returning PCR values
from both the hardware TPM and the virtual TPM. We
achieve this with our vTPM by projecting the lower
PCRs of the hardware TPM (e.g., PCRs 0 through 8) to
all virtual TPMs. This means that if a user VM reads
one of those PCRs, the vTPM facility actually fetches
the value from the hardware TPM. Extending hardware
PCRs from user VMs is therefore disabled since these
registers are logically owned by the management VM as
depicted in Figure 4. Upper PCRs are accessible by user
VMs as usual.

Therefore, we have the management VM extend the
lower PCRs with measurements of the vTPM TCB. We
have the user VM extend the upper PCRs with measure-
ments of the user VM itself. IMA reports then com-
bine lower PCR values, higher PCR values, and the mea-
surement list from both the user VM and the manage-
ment VM to provide a comprehensive view of the sys-
tem. To relay the names of applications measured into
the hardware TPM, we implemented a small extension to
Integrity Measurement Architecture that retrieves this in-
formation from the vTPM-hosting domain using the Re-
portEnvironment command. Other aspects of IMA were
left unmodified.

7 Discussion and Future Work

In section 3 we introduced the requirements that an ar-
chitecture for enabling TPM support in a virtual environ-
ment must fulfill. So far we have presented solutions for
the first three items and described their implementations.
We will now revisit our initial requirements and compare
them against our implementation. We then discuss solu-
tions for the remaining items.

7.1 Requirements Revisited

Unmodified TPM Usage Model We provide TPM
support by emulating device functionality through a soft-
ware implementation. We designed and implemented an
architecture for the Xen hypervisor that enables us to
connect each user domain to its own TPM instance. With
our command set extensions we can create as many vir-
tual TPM instances as needed. All existing TPM V 1.2
commands are available to a user domain and the TPM
command format remains unchanged.

Strong Virtual Machine to Virtual TPM Association
We have shown a design that supports strong virtual ma-
chine to virtual TPM association. Components that en-
force this need to be implemented in the backend driver
such that TPM packets can be routed to the appropriate
domain. Also, a table of virtual machine to virtual TPM
instance must be maintained.

We introduced new TPM commands for secure migra-
tion of TPM state between two virtual TPM implemen-
tations. Our migration protocol guarantees TPM unique-
ness and prevents attacks on the TPM state information
such as alterations to or omission of pieces of state infor-



mation. We based virtual TPM migration on TPM key
migration.

In our design we assume the trustworthiness of the
destination TPM implementation and the uniqueness of
migration identifiers (which can all be verified). HMAC
values and migration digests are verified such that our se-
curity features can be enforced. It is important for virtual
TPM migration that the asymmetric storage key is only
migrated into a trusted virtual TPM. A possible solution
for determining the trustworthiness of a destination TPM
is to require a certificate of the destination TPM’s stor-
age key where the signature key is an externally certified
Attestation Identity Key (AIK).

Strong Association of the Virtual TPM with the Un-
derlying TCB Using an existing attestation architec-
ture for Linux, we showed how a strong association be-
tween a virtual TPM instance and the hardware root of
trust (hardware TPM) of the platform can be established.

Our architecture and virtual TPM have been designed
such that a challenger not only sees measurements taken
inside the virtual machine OS, but can establish trust into
the virtualization environment, including the boot pro-
cess, hypervisor and the operating system that is hosting
the virtual TPM.

7.2 Trust Establishment

We have so far reported several solutions from our expe-
rience providing TPM support to virtual machines. How-
ever, there are a number of issues that still need to be
investigated. Whereas other devices can be satisfacto-
rily virtualized through device emulation, more support
is needed in our case, particularly on the treatment of se-
curity credentials such as TPM keys and associated cer-
tificates.

From our experience we can claim that it is easy to
create an endorsement key for a virtual TPM instance,
but some questions arise around the certificate that needs
to be issued:

• Who would provide a certificate for an endorsement
key of a virtual TPM?

• What guarantees would this certificate stand for?

A certificate authority, i.e., a privacy CA, bases its de-
cision to certify an AIK of a TPM on the certificate of the
EK that a manufacturer provides along with the device.
This certificate vouches for the TPM being a hardware
device and that it is firmly attached to the motherboard
of the computer. Since the availability of an EK certifi-
cate plays this important role in receiving a certificate
for AIKs, the EK certificate should also be available to
a virtual TPM instance even if it does not stand for the
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Figure 6: Certification of Endorsement Key using an
AIK

same security guarantees as those provided by a hard-
ware TPM. However, virtual TPMs can be dynamically
created whenever a new VM is created, and therefore re-
quests for EK certificates can become more frequent and
their management becomes much more dynamic.

We have found several solutions for the creation of EK
certificates, each having advantages and disadvantages.
We discuss those solutions below and, after looking at
virtual TPM migration, provide a comparison between
them.

1. Our first solution creates a certificate chain by con-
necting the certificate issued for the EK of a virtual
TPM instance to that of an AIK of the hardware
TPM. Figure 6 depicts this relationship. It shows
that a privacy CA issues certificates for AIKs of a
virtual TPM based on the certificate of its endorse-
ment key EK’. The advantage of this scheme is that
we have preserved the normal procedure of acquir-
ing an AIK’ certificate by submitting the certificate
of EK’ to a privacy CA for evaluation.

In this and the following solutions we are using an
(attestation) identity key and the TPM’s Quote com-
mand to issue a signature over the current state of
PCRs and a user-provided 160bit number. We pro-
vide as 160bit number the SHA1 hash of the certifi-
cate contents of the EK’. The resulting signature ties
this EK’ certificate and the virtual TPM instance to
the underlying platform. In addition to the PCRs,
the certificate can also contain the measurement list
of the VM environment to enable the establishment
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of trust into the certificate-signing process [21].

2. Our second solution, depicted in Figure 7, does not
use a certificate for a virtual EK’, but issues cer-
tificates for virtual TPM AIKs based on an AIK is-
sued for the hardware TPM. The resulting certifi-
cate chain ties the virtual TPM’s AIK’ to the AIK
of the hardware TPM, and thus to the hosting sys-
tem. The advantage of this solution is that once an
AIK has been issued for the hardware TPM, virtual
TPM AIKs for guest VMs can also be quickly cer-
tified. Through the chain, a link is established to
the hardware-TPM platform. The disadvantage of
this solution is that it requires changes to the nor-
mal procedure of acquiring an AIK certificate from
a certificate authority.

3. A third solution relies on a local authority to issue
the certificate for the virtual TPM instance’s EKs.
The benefit of this procedure compared to the pre-
vious ones is that the resulting virtual TPM’s EK
certificate is not tied to the hardware platform, since
no certificate chain is established to credentials of
the hardware TPM. A local EK certificate authority
can also be used for hardware TPMs if they are not
equipped with a platform certificate, as is often the
case today. Beyond this, this third solution offers
the advantage over the second one of not changing
the procedure for acquiring certificates for AIKs.

4. A fourth solution is based on a secure coprocessor
that replaces the hardware TPM used in the other
solutions to provide a hardware root of trust. The

manufacturer links the endorsement key certificate
to the secure coprocessor certificate and enables re-
mote parties to establish security properties for the
virtual TPM runtime environment as described in
Section 5.2.
Starting with this manufacturer-providedEK certifi-
cate, all the previously described solutions for creat-
ing certificate chains for virtual TPM instances can
be applied.

Depending on which solution for issuing certificates is
chosen, the migration of a virtual TPM to another plat-
form can affect the validity of certified TPM keys. If, for
example, AIKs have been certified based on an EK that
was previously tied to the hardware platform through a
chain, as we have shown in the first two solutions, the
AIKs must be invalidated once the VM is resumed on
the target platform since the link to the old platform has
now been broken. Our third solution avoids this prob-
lem, because it does not establish a firm link with the
VM-hosting platform.

What makes the realization of an architecture based
on certificate chains more difficult is that AIKs and cer-
tificates may be maintained by programs inside the op-
erating system. The TSS stack must be aware of migra-
tion and destroy AIKs once the OS resumes on the target
platform. After the AIKs have been recreated, they must
be certified for usage on the new platform. Applications
must also be made aware of the new certificates and re-
move old ones from memory.

Another problem can be certificates that clients exam-
ine while a VM is migrating to a new platform. Based on
the evaluation of the certificate, the client may treat the
peer system as trusted, although it is now running inside
a new environment. For practical purposes, a migrating
partition should offer a subscription service for any party
interested in learning about migration. Notifications can
be sent that inform subscribers that migration has hap-
pened and trigger a reestablishment of trust. We do not
currently offer such a service.

Another question that arises due to virtual machine mi-
gration is: When a virtual machine is migrated from one
system to another, should all virtual machine environ-
ments’ measurements be recorded and a history be es-
tablished? We feel the answer to this question is ”yes”,
but we have not yet explored efficient ways to support
this capability.

Table 2 gives an overview of the properties of the first
three of our proposed solutions. A decision about which
method to implement for certifying EKs must weigh
the advantages and disadvantages of each solution. If a
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Table 2: Comparison of Methods to Issue Certificates for AIKs

strong connection between the virtual TPM and the hard-
ware TPM is desired, then one of solution 1,2 or 4 should
be implemented. However, it will be necessary in this
case to invalidate the chained certificates and keys after
migration in order to reestablish a chain to the new hard-
ware root of trust. In that respect our second solution of-
fers better support for a dynamic environment, since here
only the AIKs of the virtualized environment need to be
recreated and certified. The first solution would eventu-
ally have to place the EK’ certificate on a revocation list
and create a new EK.

If a local certification process has already been estab-
lished to certify EKs for hardware TPMs, this or a similar
process can be applied to EKs of virtual TPMs as well.
It would simplify an implementation for virtual TPM mi-
gration with its VM since in this case there is no link to
the parent environment. Therefore migration would not
break any certificate chains. It can be regarded as the
least complicated solution, since neither side of the attes-
tation procedure would have to forget about credentials
that applied to the pre-migration environment.

8 Related Work

The Xen open-source repository [27] contains a lim-
ited virtual TPM implementation comprised of combined
contributions by Intel Corporation and the authors of this
paper. Our contributions to Xen so far include the vir-
tual TPM driver pair (front- and back-end drivers), hot-
plug scripts, and changes to Xen’s management tools.
We kept this infrastructure modular so that different real-
izations of virtual TPMs can work with it. The virtual
TPM design and implementation presented in this pa-
per adds the following to what is currently available in
Xen: support for migrating a vTPM instance alongside
its associated virtual machine, support for attestation of
the complete vTPM environment along with the contents
of a virtual machine, and an entirely separate software
implementation of the TPM specification. In addition,
the virtual TPM now in Xen is a partial implementation
based on version 1.1 of the TPM specification, while we
have updated our virtual TPM to be a complete imple-
mentation of version 1.2.

Previous research in the area of trusted computing ex-
amined how data that is protected (sealed) by a hardware
TPM can be moved to another platform. Kuehn et al. [17]



proposed a protocol for migrating the key-related hard-
ware TPM security state from one hardware platform to
another involving a separateTPM Migration Authority
(TMA). Our protocol differs from the one presented there
in many significant ways. Most notably, we migrate the
complete virtual TPM state, we do not require a third
party for migration, we maintain associations of virtual
TPMs to their VMs and the operating system, and we can
seamlessly integrate our protocol into the automated VM
migration process. In addition, the extensions we intro-
duce to the TPM standard do not require changes to ex-
isting commands and semantics. Similar to their concern
about security of the destination TPM, we have pointed
out that secure migration relies on a decision process that
determines the safety of migrating a key pair to another
TPM based on trust in that other TPM implementation.

The Terra project [7] investigated trusted virtual ma-
chine monitors. They developed a prototype based on
VMWare’s GSX server product that performs attestation
of virtual machines and applications launched therein.
Their publications recognize the availability of TPM
1.1b, but do not describe the design of a virtual TPM
to run their attestation scheme against. Terra could use
something like our vTPM facility to make a virtual TPM
instance available to each of their virtual machines.

9 Conclusions

We have designed and implemented a system that pro-
vides trusted computing functionality to every virtual
machine on a virtualized hardware platform. We virtual-
ized the Trusted Platform Module by extending the stan-
dard TPM command set to support vTPM lifecycle man-
agement and enable trust establishment in the virtualized
environment. We added support for secure vTPM mi-
gration while maintaining a strong association between a
vTPM instance and its associated VM.

We uncovered the most important difficulties that arise
when virtualizing the TPM. Whereas usually virtualiza-
tion of hardware devices can be achieved through soft-
ware emulation, we have demonstrated that this is not
sufficient in the case of the TPM. Certificates that may
exist for hardware TPMs and vouch for strong security
properties need to be issued for virtual TPM instances’
endorsement keys . These certificates can naturally not
represent the same properties for a virtual TPM process
running in user space. Trust chains that are usually
owned by a single OS nowpass througha hierarchy of
virtual machines. Virtual TPM migration can create fur-
ther problems if certificate chains that have been estab-
lished break or trust must be reestablished.

We virtualized the Trusted Platform Module by mak-
ing all low-level TPM 1.2 commands available to every
virtual machine. Applications that don’t handle certifi-

cates related to TPM-generated keys or do not deal with
the concept of trust can remain unchanged. Applica-
tions challenging a virtual machine or those following
certificate chains, like for example a privacy CA, must
be aware of the modifications that were necessary for the
virtualized environment. Those modifications include
certificate chains that consist of different types of certifi-
cates issued through special signing mechanisms of the
virtual TPM, or certificates provided by the manufacturer
of the device or those issued through a certificate author-
ity such as a privacy CA. Applications that have been
adapted to work in the virtualized environment will be
backwards compatible with platforms using a singleton
hardware TPM.

Our proposed architecture for virtualizing the TPM is
a major building block for establishing trust in virtual-
ized environments. For example, Trusted Virtual Data
Centers [16] create distributed virtual domains offering
strong enterprise-level security guarantees in hosted data
center environments. In such an environment, virtual
TPMs help to establish trust in strong domain security
guarantees through their remote attestation and sealing
capabilities.
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[17] U. Kühn, K. Kursawe, S. Lucks, A. Sadeghi, and C. Stüble. Se-
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