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Abstract
In this paper, we characterize wide-area network

applications that use the TCP transport protocol.  We also
describe a new way to model the wide-area traffic
generated by a stub network.  We believe the traffic model
presented here will be useful in studying congestion
control, routing algorithms, and other resource management
schemes for existing and future networks.

Our model is based on trace analysis of TCP/IP wide-
area internetwork traffic.  We collected the TCP/IP packet
headers of USC, UCB, and Bellcore networks at the point
they connect with their respective regional access networks.
We then wrote a handful of programs to analyze the traces.
Our model characterizes individual TCP conversations by
the distributions of: number of bytes transferred, duration,
number of packets transferred, packet size, and packet
interarrival time.

Our trace analysis shows that both interactive and bulk
transfer traffic from all sites reflect a large number of short
conversations.  Similarly, it shows that a very large
percentage of traffic is bidirectional, even for bulk transfer.
We observed that interactive applications send significantly
different amounts of data in each direction of a
conversation, and that interarrival times for interactive
applications closely follow a constant plus exponential
model.  Half of the conversations are directed to a handful
of networks, but the other half are directed to hundreds of
networks.  Many of these observations contradict
commonly held beliefs regarding wide-area traffic.
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by the NSF and DARPA under Cooperative Agreement NCR-
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1. Introduction
“The key issue in the design or selection of a

congestion management scheme is the traffic pattern, and
traffic patterns are dependent upon the application
[Jain90].”  This paper presents conversation level analysis
of wide-area TCP traces collected on two campus
networks—University of Southern California (USC) and
University of California, Berkeley (UCB), and one
industrial research site—Bellcore.  Most of the analysis was
done as part of term projects for graduate courses in
performance evaluation and distributed systems at the
University of Southern California.  Our goal was to collect
information that would be useful in evaluating future
network designs.   Since TCP packets make up roughly 80%
of all wide-area network traffic,1 a model based on TCP
traffic is necessary to study network behavior.   We restrict
our discussion to TCP in this paper.  Table 1 summarizes
our most important results.

When simulating new congestion, flow control, and
routing algorithms one needs to model the overall pattern of
traffic flowing through the network, from distribution of
packet sizes and interarrival times to characteristics such as
distribution of host reference patterns and direction of
traffic flow.  Current practice is to use FTP and TELNET
sources, where FTP sources send huge quantities of data in
one direction and TELNET sources send a Poisson stream of
small packets in one or both directions [Demers89]
[Rama90].  Current practice ignores the distribution of
number of bytes transmitted, the bidirectionality of bulk
traffic sources, and the duration of interactive connections.

Future broadband wide-area networks will probably
transfer large amounts of data and carry a mix of traffic
currently not found on the Internet.  We believe this does
not trivialize our present study, for several reasons.  First, it
will be several years before the current traffic mix changes
appreciably.  Second, as it changes, it will not obviate the

1For the UCB data, UDP packets make up 16% of all network
traffic, while ICMP packets account for only 1% of all traffic.  Of
all UDP packets, 63.63% belongs to DNS, 15.82% to ROUTE, and
10.51% to NTP.
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existence of traditional traffic.  Third, we believe this paper
illustrates a general technique for workload measurement of
wide-area internetworks.

75-90% of the conversations belonging to bulk transfer
applications send less than 10 kilobytes of data.  Bulk
transfer is request-response in nature.

Over 90% of interactive conversations send fewer than
1,000 packets and 50% of interactive conversations last
less than a minute and a half.  Packets belonging to
interactive applications are mostly smaller than 512
bytes.

A constant plus exponential distribution best models
interarrival times of packets belonging to interactive
applications.

A large portion of bulk transfer applications, which are
responsible for more than 50% of observed network
traffic, show bidirectional traffic flow.

Interactive applications can generate 10 times more data
in one direction than the other, using packet sizes
ranging from 1 byte to 512 bytes.

Table 1: Selected results.

Previous traffic studies of TCP/IP have examined the
statistics of the aggregated packet arrival process on local
area networks [Jain86] [Gusella90] [Leland91], at border
routers [Cáceres89], and inside a wide-area backbone
[Heimlich89]. These studies have shown that packet
interarrival times are not Poisson, but rather follow a
packet-train model. The packet-train model has proven
valuable in the design of packet routers [Feldmeier88]
[Jain89].

The study presented in this paper is different from all
the studies mentioned above.  Instead of confining
ourselves to the network and transport layers, we studied
the characteristics of several applications. We believe these
applications are representative of applications currently
running on wide-area networks.

The decision to characterize application traffic was
supported by the following observations.  Measured
interarrival times alone are not adequate to characterize
conversations for the purpose of driving flow and
congestion control algorithm simulations, because
interarrival times are themselves a function of existing flow
control mechanisms—interarrival times do characterize
interactive traffic, which is unlikely to be constrained by
flow control.  In contrast, bulk traffic must be characterized
by the amount of data transferred—the observed duration of
bulk transfers mostly reflects network link speed and flow
control algorithm. Furthermore, although interactive
conversations are bidirectional, they send much more data
in one direction than in the other; an accurate model must

take this into account.  Finally, some applications converse
with more networks than do others (see Figure 6).

From these observations, we concluded that
researchers would benefit from more realistic traffic
models, particularly in studying switching and control
mechanisms through simulation. This paper makes the first
step towards an internetwork source model.  It outlines the
necessary steps to describe and simulate a new conversation
between two networks.   However, it does not seriously
investigate the question of when to establish a conversation
between two networks; we are currently addressing this
problem.

The next section describes the data collection and
analysis methods.  Section 3 analyzes the characteristics of
the TCP conversations observed. Section 4 discusses a
network traffic model based on our findings.  Section 5
discusses possible uses of our model and future work.
Section 6 concludes the paper by discussing the relationship
of our results to commonly held assumptions of wide-area
network traffic.

2. Measurement and Analysis Methodology
Below we describe the data collection methods, loss

rates, and our definition of a conversation.

2.1. Data Collection Sites
Wide-area traffic data was collected at two university

campuses and one industrial research laboratory.  The data
collected at UCB traced all traffic between the campus and
the Bay Area Regional Research Network (BARRnet);
data collected at USC  traced all traffic between the campus
and Los Nettos; and data collected at Bellcore traced all
traffic between their Morristown laboratory and the John
von Neumann Center Network (JVNCnet).

2.2 Trace Contents
A total of 5,891,622 TCP packets were collected at

UCB, 5,221,036 at USC, and 1,703,269 at Bellcore. Traces
from UCB and USC were collected over a period of one day,
traces from Bellcore were collected over a period of three
days.  The collection started at 10:20 on Tuesday, October
31, 1989 at UCB, 14:24 on Tuesday, January 22, 1991 at
USC, and 14:37 on Tuesday, October 10, 1989 at Bellcore.

Each record in all of the traces consists of a time stamp
and the first 56 bytes of raw network data.  The time stamp
records the arrival time of the packet at the tracing
apparatus.  The 56 bytes of data hold the packet headers
from the datalink layer (Ethernet), the network layer (e.g.
IP), and the transport layer (e.g. TCP and UDP).2

2We did not encounter any packets with IP or TCP protocol options.
In the UCB trace, we found 0.02% of the IP packets carrying TCP

data to be IP fragments. For USC, the number was 0.05%, and for
Bellcore, the number was 0.02%.  We ignored these fragments.
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Traffic Type % Packets % Bytes % Conversations
UCB USC BELL UCB USC BELL UCB USC BELL

ftp (ctrl+data) 12.0 5.0 18.7 36.2 10.6 54.9 2.2 1.8 4.7
shell (rcp) 0.2 3.6 1.4 0.4 12.5 4.3 0.2 0.1 0.6
smtp 11.6 3.1 12.6 11.0 1.9 10.6 54.0 29.3 65.2
dc_10 — 3.5 — — 0.8 — — 0.8 —
vmnet (bitnet) 10.0 9.1 — 25.4 20.7 — 0.1 1.8 —
uucp 0.2 0.1 0.8 0.4 0.1 1.3 0.3 0.6 2.1
nntp 11.6 36.3 9.2 15.8 44.5 15.6 22.5 44.8 4.7
telnet 28.0 16.6 36.3 5.5 2.3 6.5 3.2 4.9 8.4
rlogin 15.5 5.8 18.5 2.8 0.7 3.1 1.6 1.5 4.1
x11 0.2 5.0 0.4 0.2 2.5 0.1 — 0.3 0.4
ircd 4.6 — — 1.3 — — 0.5 0.1 —
finger 1.1 0.4 0.5 0.6 0.2 0.2 14.2 10.0 7.3
domain 0.1 0.1 — — 0.2 — 0.1 1.8 0.1
other 4.9 11.3 1.6 0.4 3.1 3.1 1.1 2.2 2.4

Table 2: Breakdown of unidirectional TCP traffic, by packets, by bytes, and by conversations.

2.3. Tracing Instrumentation and Packet Loss Rate
The UCB data was collected with a Sun 3 workstation

equipped with a microsecond timer [Danzig90].  The
resulting time stamp resolution was 10 microseconds.  The
workstation ran a modified Unix kernel with a circular
buffer big enough to hold 128 full-size Ethernet packets.  A
dedicated user program transferred trace records from this
buffer to tape.  No packet losses due to buffer overflows
were detected during the UCB measurements.  The packet
loss rate induced by separate stress testing was less than 5%
in the worst case.

The USC data was collected using the NNStat program
suite [Braden89] on a Sun SparcServer 4/490. The NNStat
program uses the Sun gettimeofday() system call which has
a 20-millisecond resolution.  During similar measurements,
we estimated the loss rate by sending a Poisson stream of
ping packets.  We observed that 0.6% of these packets were
missing from the tape.

The Bellcore data was collected using a Sun 3
workstation augmented with a microsecond interval timer
and a single board computer dedicated to collecting and
timestamping trace packets.  The timestamps have a 10
microsecond resolution.  A hierarchical system of double
buffering carried the trace records from the single-board
computer to  tape.  No packet loss was detected anywhere
in the monitoring system during the Bellcore measurements
[Leland91].

2.4. Are the Traces Representative?
Both USC and UCB campuses use mostly UNIX and

IBM computing systems.  Bellcore uses mostly UNIX
systems.3 . We believe that the systems traced are
representative of sites currently attached to the Internet, and

3A short glossary of Internet protocols and applications is
provided in  Appendix 2.

that our analysis also applies to other sites.  However, we
recognize that traces collected at other sites might show a
different application breakdown than the ones reported
here, and we are currently negotiating with other sites for
additional  data collection to further validate our results.

The breakdown of traffic varies greatly from site to site
(see Table 2).  However, the characteristics o f
conversations are essentially identical between the three
sites, even though the USC trace was collected one year and
three months after the others.  Furthermore, these
characteristics are also shared by two different days of UCB
traces, and by a one-day trace and a three-day trace of
Bellcore traffic.  That is, the distributions of number of
bytes transferred, conversation durations, total packets per
conversation, and packet sizes are indistinguishable.  For
legibility, we present only UCB data in the body of the
paper.  Appendix 1 contains representative figures
comparing data from the three sites.  Additional data can be
found in [Danzig91].  One does need to account for the
differences in traffic breakdown when generating the actual
sequence of conversations to simulate.

2.5. Traffic Pattern Analyzer
We wrote a traffic pattern analyzer to reduce the raw

packet trace data and produce the statistics presented in this
paper.  One of the first decisions we had to make was how
to break up the trace into meaningful units.  Should we
adopt the packet-train model or should we maintain a state
machine per TCP connection?  We look at these alternatives
below.

The packet-train model has replaced earlier Markov
models of network traffic [Jain86] [Heimlich88]
[Gusella90].  In the packet-train model, a stream of packets
is broken up into trains.  Two consecutive trains are
delimited by a MAIG (maximum allowable inter-car gap).
The MAIG is usually chosen to encompass 90 percent of all
interarrival gaps.  Different researchers have used different
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MAIGs, ranging from 500 milliseconds to 50 seconds,
depending on the network measured.

In contrast, we divided up the traffic into application-
level conversations.  We define a conversation to be a
stream of packets travelling between the end points of an
association, delimited by a twenty-minute silence; an
association is in turn defined as a <protocol, source address,
source socket, destination address, destination socket>
tuple.  A twenty-minute silence is longer than FTP's idle
connection timeout value of fifteen minutes.  Early on we
experimented with a five-minute silence rule.  The
difference in results was minimal.   We could have detected
the TCP connection establishment handshakes between a
source and destination pair and used them to determine the
beginning and end of a conversation.  This required
maintaining a state machine and associated timers for every
live connection.  Lack of memory space prevented us from
doing so.

In the case of FTP, conversations can subsume multiple
TCP connections.  We clump several TCP connections into
one conversation because each FTP session initiates one
FTP-control and zero or more FTP-data connections.  We
also clumped back-to-back and concurrent FTP sessions
between the same source-destination IP-address pair into
one conversation.4

Since we want to model the characteristics of transport
layer traffic in general, independent of TCP itself, we
further decided to drop all TCP-specific  traffic.  We
dropped TCP connection establishment packets and all
zero-byte packets assuming that these were
acknowledgement packets.   We also filtered out all
retransmitted packets.5 Retransmitted packets were detected
by matching their sequence numbers against those of the
last 128 packets from the same conversation.  Most
retransmitted packets match  one recently transmitted
within the previous 64 packets.  The oldest retransmitted
packet detected in the analysis of the traces was at position
104 into the buffer.  Since we are throwing away
retransmissions, we are also throwing away most of the
keep-alive packets, which share a single sequence number.
This also means that every now and then we would see a
lonesome keep-alive as a conversation transferring a single
1-data-byte packet.  We filter out all such false
conversations in our analysis.  For the Bellcore trace, we
further notice that 50% of all NNTP conversations between
Bellcore and Rutgers consist of a single 6-data-byte packet.
After closer examination, we attribute those conversations
to an implementation fault at either Bellcore or Rutgers.

4For UCB data, each FTP conversation averages about 4.2
connections consisting of ftp-ctrl and ftp-data connections.  For
USC data, the average is about 3.5 connections per conversation.
For both sets of data, a little over 60% of all FTP conversations
consist of only one connection; this is due to the client’s side
making only the ftp-ctrl connection.
5Retransmitted packets accounted for between 0.3% to a little
below 3% of all packets belonging to an application.

Our traffic pattern analyzer filters out all such
conversations.

3. Characterization of Application Conversations
Our trace study is divided into two parts.  The first part

measures applications running on TCP/IP internetworks.
The results are presented in this section under five general
categories: traffic breakdown, bulk data transfer
applications, interactive applications, traffic flow, and
wide-area network locality.  We are interested in such
questions as:

• How does TCP traffic break down into interactive and
bulk traffic?

• How “bulky” is the data transferred by bulk applications?
• What are the characteristics of interactive applications in

terms of bytes transferred, burstiness, duration, and
interarrival time?

• Is traffic flow unidirectional or bidirectional?
• Is there network-pair locality on wide-area networks and

how many concurrent conversations are there between
such network pairs?
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Fig. 1: Total bytes transferred per unidirectional
conversation.
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The second part of the study, constructing a traffic source
model, is presented in Section 4.

 3.1. Traffic Breakdown
For lack of a more accurate model, previous studies

that simulate flow control, congestion control, multiple
access protocols, and traffic dynamics in general have been
forced to assume a rather simple traffic model [Demers89],
[Floyd91], [Wilder91], [Will91], [Zhang90], [Zhang91].
These studies either use a continuous bulk transfer or an
arbitrary mix of bulk and interactive traffic.

Table 26 shows that while TCP traffic does consist of
bulk and interactive traffic as commonly assumed, the
distributions of number of bytes, packets, and conversations
attributed to each application could be more representative.
Even though bulk applications send more data than
interactive ones, interactive conversations still send 5-10%
of network bytes and 25-45% of network packets.
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Fig. 2: Duration and packets transferred per conversation
for interactive applications.

6The applications which appear in boldface are the ones we
concentrate our study on.

We think it important to realize that interactive
applications are responsible for 25-45% of all Internet
packets.  Simulations that model internetwork traffic as
mostly large bulk transfers may overestimate the benefit of
mechanisms proposed  to improve bulk transfer
performance.   Most existing studies evaluate the
robustness of  designs and algorithms under worst case
loads, but fail to contrast their performance to that of
equally robust designs or algorithms when running under
average loads.

3.2. Bulk Data Transfer
Many simulation studies commonly overestimate the

amount of data sent by bulk data transfer applications such
as FTP.   Transfer sizes usually range from 80K to 2M
bytes, or simply continue to the end of the simulation run
[Demers89] [Floyd91] [Wilder91] [Zhang90] [Zhang91].
Figure 1a shows that about 75-90% of bulk transfer
conversations transfer less than 10K bytes.  We think this
observation is correlated with the observation made in
[Ouster85] that most files are small.

If this is true of Internet source traffic in general, then
it should be taken into account in future internetwork
.
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simulations. To the extent that simulated algorithms
employ feedback mechanisms (such as congestion or flow
control) [Rama90], it is important to know that in most
sessions data transfer will complete before any such
feedback is received.   We believe this observation is
important because the emergence of voluminous
multimedia traffic will not make existing traffic disappear.

3.3. Interactive Applications
Network flow control and  the Maximum Transferrable

Unit (MTU)7 determine, to a great extent, the measured
statistics of bulk internetwork traffic.  In contrast, Figure 1b
and 2a show that about 90% of TELNET and RLOGIN
conversations send less than 10K bytes over a duration of
1.5 to 50 minutes. Figure 3a shows that about 90% of
TELNET and RLOGIN packets carry less than 10 bytes of
user data, which is much smaller than the MTU.  Thus
interactive applications are more or less unaffected by flow
control and MTU size.
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Fig. 4: Distribution of packet interarrival by application.

7For historical reasons, wide-area TCP connections still use an
MTU of 512 data bytes despite the fact that the NSFNet backbone
supports 1500-byte packet.

If interactive applications are not affected by network
flow control and MTU, then the observed characteristics
reflect the true nature of such applications.  However, we
should not assume that interactive traffic carries less data—
Figure 1b shows that 80% of all interactive conversations
send as much data as the average bulk transfer
conversation—rather, it means that bulk transfer
applications send a smaller amount of data than is often
assumed.

In most traffic models used in existing simulations or
testbed studies, conversations are assumed to last anywhere
from 500 seconds, 600 seconds, to “keep on forever”
[Demers89] [Mankin90] [Floyd91] [Wilder91] [Zhang91].
Figure 2a shows that the duration of interactive
conversations is highly variable.  This fact, along with the
small number of packets per conversation (see Figure 2b),
might influence steady state feedback assumptions, as well
as per packet processing time with respect to gateway
algorithms.

Finally, our data shows that while interarrival times for
bulk data transfers exhibit the packet-train phenomenon,
interarrival times for interactive applications should be
modeled by a constant plus exponential random time (see
Figure 4a).  Section 4 describes this phenomenon in more
detail.
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3.4. Traffic Flow
Most simulations on gateway queueing such as

[Demers89],  [Floyd91], and [Zhang90] have assumed
unidirectional data flow.  Figure 5 shows that a large
percentage of traffic, both interactive and bulk, is
bidirectional.  Simulations should generate traffic in both
directions.  Furthermore, Figure 3b and 4b together affirm
that many bulk transfer applications contain a request-
response phase, which causes a synchronization point
where no data is flowing in either direction. In turn, this
synchronization point causes classic packet train behavior:
a handshake followed by a big burst.  For example, NNTP
sends a query, waits for a response, and then does a bulk
transfer.  This behavior may influence congestion and
transport mechanisms and should be included in simulation
studies of these mechanisms.  Small packets, short
conversations, and birectional flow all contribute to the
traffic dynamics of the internetwork.  These characteristics
of current internetwork traffic could affect traffic
segregation and oscillation findings [Floyd91] [Wilder91]
[Zhang91].

3.5.  Wide-Area Network Locality
Mogul reports strong locality of reference between

pairs of hosts on a local area network [Mogul91].  This
locality of reference means that certain hosts communicate
more with one another than with other hosts.  Does such
locality of reference exists between host pairs or network
pairs in wide-area internetworks? Figure 6 shows that it
indeed occurs.  For example, half of U C B  telnet
conversations are directed to just 10 sites.
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Given network-pair locality on wide-area networks, we
want to know how many concurrent conversations run
between popular network-pairs.  Figure 7a shows  the
concurrent conversations to UCB’s eight most popular
destination networks.   In Figure 7, each band represents a
number of concurrently running conversations.   The band
at the bottom of a bar represents the probability of finding
zero on-going conversations.  The next band up represents
the probability of finding one on-going conversation.  The
third represents the probability of finding two simultaneous

conversations, and so on.  The seventh bar in Figure 7a
shows that it is very probable to find more than two
concurrently running conversations between these two
networks.  However, this particular bar represents the
traffic between UCB and Lawrence Berkeley Laboratory
which are located several hundred yards from each other.
The other network pairs do not show as many concurrent
conversations as do this pair.
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Fig. 7: Number of concurrent conversations for the
eight most popular network and host pairs coming out
of UCB (see section 3.5).

Given that we frequently find concurrent conversations
between popular network pairs, how often do we find
concurrent conversations between host pairs on wide area
networks?  Figure 7b shows that it is unlikely with the
present Internet traffic, but this may change in the future.
Eight of the ten most frequently referenced host pairs
correspond to NNTP exchanges.  The eighth host-pair in
Figure 7b frequently exhibits two or three concurrent
conversations.  This host pair connects an UCB host to an
Andrew host at CMU; we suspect that we captured traces of
an experiment with the Andrew File System.  The seventh
host-pair shows a site that frequently has two simultaneous
conversations.  Nearly all of these are simultaneous NNTP
conversations, and reflects that NNTP transfers news
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messages in only one direction per TCP connection.8  From
this measurement of current traffic, we can say that there
are not many concurrent conversations between host pairs.

4. Source and Internet Traffic Model
This section describes a source model for generating a

random but realistic sequence of traditional internetwork
conversations.  Because 6 of the 35 applications we
identified in our traces account for more than 96% of the
bytes transmitted, we model only these applications.  They
are FTP, SMTP, NNTP, VMNET, TELNET, and RLOGIN.

We must first solve a difficult problem: how to specify
the matrix of sites between which application traffic flows.
We call this the traffic matrix.  This is hard because certain
applications reference more sites than do others (see Figure
6).  For example, we see that half of UCB T E L N E T
conversations are directed to just 11 sites, with the other
half referencing over 100 sites.  NNTP references just 11
sites for the whole trace.  Half of SMTP conversations
reference over 50 sites, and the other half reference 300
other sites. Overall, half of UCB's conversations are
directed to just 17 sites.  Specifying the traffic matrix is
made more difficult because the application mix changes
from site to site. We are pursuing an algorithm to generate
internetworks with representative traffic patterns.  The rest
of this section assumes this has been done.

Assuming we are given the traffic matrix, there are
four steps to generating a sequence of realistic internetwork
conversations for a set of sites.  First we must determine
when to establish the next conversation for a given
application.  Second, depending upon whether the
application is bulk or interactive, we must either select the
amount of data exchanged in each direction or the
conversation's duration.   Third, we must choose an
appropriate destination host for this conversation, and
fourth, we must choose the rule that determines the
sequence of packets that this conversation sends.  Below,
we describe these steps.

We choose the application type of a site's next
conversation from the site's traffic breakdown.  This is not
as obvious as it seems, because conversations depend on
one another.  For example, one is more likely to send mail
to a site shortly after fingering it than if one had never
referenced it before.  However this effect is not particularly
pronounced in the data.  We found that the  types of
successive conversations are independent, although we did
not investigate correlations on the sequence of conversation
types between a specific network pair or host pair.  Hence,
we model arrivals of new application conversations as time-
varying Poisson processes with site and time-of-day
dependent rates.  For example, Figure 8 plots measured
arrival rates of UCB conversations for several applications.

8In the future, we may decide to clump several TCP connections
from one NNTP session, as we have done for FTP.  So doing will
accentuate our observations on traffic bidirectionality and the
number of concurrent conversations between host pairs.

By making the rate depend on time of day, it is possible to
model site-specific configurations.  For example, at UCB,
VMNET  runs just four times per day at specified times,
while at USC VMNET runs on demand.
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Fig. 8: Conversation arrival rate.

The next step depends on whether the conversation is
interactive or bulk.  If it is bulk, we choose the number of
bytes transmitted in each direction from the joint
distribution of bidirectional bytes transmitted.  We illustrate
one such distribution in Figure 5b for SMTP.   This figure
plots the larger side of a conversation on the x-axis and the
smaller side on the y-axis.  Bigger, darker marks indicate
higher likelihood.  If the conversation is interactive, we
choose its duration from the distribution of duration.  We
illustrate one such distribution in Figure 2a.  We indicate a
distribution of duration for bulk protocols in Figure 2b, but
do not employ it in the model because the duration of a
bulk transfer depends on network bandwidth and flow
control, rather than the traffic sources.

If  required, one can spend a bit more effort and model
the number of items transferred by bulk applications, such
as the number of news articles exchanged during an NNTP
conversation.  For example, given the distribution of the
number of items transferred and the distribution of the
number of bytes in an item, we can model the synchronous
interactive phase inherent in all four bulk applications,
during which file names, commands, and article numbers
are exchanged.  These interactive phases act as
synchronization points.  At the start of one of these phases,
no outstanding packets exist between end points. Hence,
there is at least one round trip time between bulk
exchanges.

The third step is to choose the destination site for this
conversation.  This is done from the traffic matrix discussed
in the second paragraph of this section.

The fourth and final step, specifying packet arrival
times and sizes, depends on the application.   For bulk
transfers, packet sizes and interarrival times depend on
physical characteristics of the network, the bidirectional
distribution of bytes transferred, and the distribution of
items transferred (if the synchronous nature of bulk transfer
is being modelled).   While their packet interarrival times
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depend on the network, their packet sizes depend on the
application.  During bulk transfer, packet sizes are a
network MTU followed, if necessary, by a final smaller
fragment.  During control exchanges, packet sizes are
smaller, corresponding to file names and commands; it is
necessary to draw their packet sizes from the measured
distributions (see Figure 3b).

In contrast to bulk traffic, packet interarrival times of
interactive traffic depends on the user.  Users' keystrokes
generate “byte-sized” packets with a constant plus
exponential interarrival time.  The destination process sends
a response for every packet that it receives; occasionally it
returns a large response (see Figure 3a).   A close
inspection of the interarrival time of TELNET and RLOGIN
traffic presented in Figure 4a reveals that 10% of the time,
interarrival times are less than 100 milliseconds.  These
short interarrival times occur for two reasons.  First, when
the destination sends a response greater than a network
MTU, its packets arrive in rapid succession.   These back to
back MTUs account for roughly a quarter of the interarrival
times less than 100 milliseconds. Second, network
queueing and operating system unresponsiveness can
deliver single key strokes to the destination in rapid
succession.  Back to back single data byte packets
constitute roughly three quarters of these short interarrival
times.

The network traffic matrix and this sequence of four
steps can be used to create a realistic source of internetwork
conversations.  We are in the process of creating a tool  to
automatically generate internetworks and sequences of
conversations to drive internetwork traffic simulations.  We
are also investigating techniques to simulate much larger
internetworks than is currently possible.   In the next
section we discuss one possible application of such a tool.

5. Applying the Traffic Characterizations
Since we are not suggesting that algorithm robustness

testing should use our workload model in place of worst-
case scenarios, just what good is a tool for generating
realistic internetwork traffic?  This section describes one
problem that needs a realistic internetwork traffic model.

The problem of multiplexing application datagram
traffic over wide-area virtual circuits reappears with the
advent of high-speed Asynchronous Transfer Mode (ATM)
networks.   Assuming the existence of a reservation scheme
for handling the requirements of multimedia traffic
[Ferrari90], we still have to accommodate the dynamics and
requirements of traditional datagram traffic.  When a
datagram arrives at an ATM gateway, it needs to be routed
onto an appropriate virtual circuit.  If such a circuit doesn’t
exist, data transmission must wait until one is established.
On the other hand,  idle virtual circuits consume resources
inside the ATM network.  We want to find ways to
multiplex TCP conversations over ATM virtual circuits that
provide adequate performance while making efficient use
of network resources.

We need to trade the performance costs of establishing
new virtual circuits with the resource utilization advantages

of closing idle circuits.  Evaluating this tradeoff requires a
good, average case internetwork traffic source model.  With
such a model we could decide how to map a set of TCP
conversations onto a possibly smaller set of ATM virtual
circuits, choose the queueing discipline for multiplexing
datagrams onto these virtual circuits, and arrive at a timeout
algorithm for reclaiming idle virtual circuits.

No previous model of wide-area traffic is appropriate
for this study.  To evaluate the performance of different
mapping schemes, we need a realistic internetwork traffic
matrix.  Without accurate knowledge of application mix
and behavior, we cannot predict the effect of multiplexing
several different TCP conversations through a single ATM
virtual circuit.  To evaluate timeout schemes,  we need the
distribution of conversation durations and conversation
interarrival times.

We believe there are other cases where a detailed
characterization of applications as presented in this paper
will be required.  Even for studies that aim to prove only
the robustness of new designs or algorithms, using our
model can show how new designs or algorithms perform on
the common case.

6. Implications and Conclusions
The application characteristics we identify contradict

the following commonly held beliefs regarding current
wide-area traffic:

• Bulk sources transfer large amounts of data per
conversation.

• Bulk sources send large packets in only one direction.
• Interactive sources send small packets in one direction,

and receive echoes of comparable size in the opposite
direction.

• Internetwork traffic can be modeled by either a Poisson
interarrival process or a packet-train model alone.

Addressing these myths in order, we have shown that:

• Eighty percent of the time, classic bulk transfer
application such as FTP transfer less than 10 kilobytes per
conversation. Other applications commonly categorized
as bulk traffic sources, such as SMTP and NNTP, transfer
even smaller amounts of data (see Figure 1a).

• Traffic generated by FTP, SMTP, NNTP, and VMNET is
strongly bidirectional. Furthermore, SMTP and NNTP
send as many small packets as large packets (see Figures
5b and 3b).

• Interactive applications routinely generate 10 times more
data in one direction than the other, using packet sizes
ranging from 1 byte to 512 bytes (see Figures 5a and 3a).

• Interactive packet interarrivals closely match a constant
plus exponential distribution (see Figure 4a).

We are continuing work on tools to create wide-area
network traffic based upon our characterizations.  We plan
to study various algorithms' responses to average case data,
especially flow control and congestion control algorithms
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whose robustness, but not average case behavior, was
evaluated in previous studies.  We feel that there is more
work to be done in understanding traffic reference patterns,
and believe that a better understanding of these could
impact the design of future networks.
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Appendix 1

Comparative Data from the Three Sites
In the following figures, curves labelled uc␣represent

UCB data, ones labelled bc represent Bellcore data, and
ones labelled sc represent USC data.
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Fig. A: Total bytes transferred per
unidirectional FTP conversation.
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unidirectional TELNET conversation.
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Appendix 2

Glossary of Internet Protocols and Applications

DC_10 Cadre Teamwork Mailbox 10.
DNS Domain Name Service, host name

resolution protocol.
DOMAIN Domain Name Service.
FINGER User information query application.
FTP File Transfer Protocol.
ICMP Internet Control Message Protocol.
IP Internet Protocol, a network layer

datagram protocol.
IRCD Internet Relay Chat Program Server, a

tele-conferencing application.
NTP Network Time Protocol.
NNTP Network News Transfer Protocol.
RLOGIN Remote login application.
ROUTE Routing information exchange protocol.
SHELL Remote shell application, often used for

remote copy (rcp) operations.
SMTP Simple Mail Transfer Protocol.
TCP Transmission Control Protocol, a reliable

transport layer protocol.
TELNET Remote terminal application.
UDP User Datagram Protocol, an unreliable

transport layer protocol.
UUCP Unix to Unix Copy Program, used for

mail, news, and file transfer.
VMNET A method of running the RSCS protocol

(usually from IBM  mainframes running
VM ) on top of TCP; it is used to handle a
majority of the BITNET backbone traffic.

X11 X window system.


