
Pegboard: A Framework for Developing Mobile Applications
Danny Soroker1, Ramón Cáceres1, Danny Dig2, Andreas Schade3, Susan Spraragen1, Alpana Tiwari1

 1 IBM T.J. Watson Research Center 2 Department of Computer Science 3 IBM Zurich Research Lab
 19 Skyline Drive University of Illinois Säumerstrasse 4 / Postfach
 Hawthorne, NY 10532, USA 201 N. Goodwin Ave CH-8803 Rüschlikon

 {soroker,caceres,sprara,alpana} Urbana, IL 61801, USA Switzerland

 @ us.ibm.com dig @ uiuc.edu san @ zurich.ibm.com

ABSTRACT
Tool support for mobile application development can significantly
improve programmer productivity and software quality.
Pegboard is a novel tooling framework that extends the Eclipse
integrated development environment to support the development
of mobile distributed applications. Its extensible design supports
multiple application models and the orchestration of external
tooling components throughout the development cycle. In this
paper we describe Pegboard’s architecture and implementation,
and show how it improves the development experience through
organization, visualization, simplification and guidance. We also
discuss insights gained from interviewing software developers,
including early users of Pegboard.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
graphical environments, integrated environments, interactive
environments, programmer workbench.

C.2.4 [Computer-Communication Networks]: Distributed
Systems – client/server, distributed applications.

General Terms
Design, Human Factors, Languages.

Keywords
Integrated Development Environments, Application
Development, Mobile Applications, Distributed Applications,
User-Centered Design.

1. INTRODUCTION
One vision of mobile computing is to deliver the power of
network computing through devices one can easily carry. To
achieve this vision, mobile computing applications require
collaboration between a mobile device and other networked
computing nodes, such as servers and other devices. These

applications are therefore distributed and often involve multiple
components running on multiple platforms. Such applications
also need to address mobility-specific issues, such as device
heterogeneity and intermittent connectivity.

Developing mobile applications is a complex task. Consider
Vindigo [4], an interactive city guide for handheld devices that
provides location-based information in categories such as dining,
shopping and entertainment. The Vindigo code base targets
several hardware and software platforms. The server software
executes on x86 machines running Linux, while client software
executes on a range of devices running Palm OS, Windows
Mobile, Binary Runtime Environment for Wireless (BREW), or
Java 2 Micro Edition (J2ME). Differences among platforms
require specializing large portions of code to individual platforms,
for example code that exploits the availability of a thumb wheel
on one particular device. On the other hand, many functions are
common to the server and some or all of the clients, for example
computing walking directions. To avoid implementing the same
function multiple times or fixing the same bug in multiple places,
developers seek to share as much code as possible between target
platforms. Designing, writing, testing, debugging and deploying
a distributed mobile application presents many challenges.

Integrated Development Environments (IDEs) – such as Eclipse
 [10] and Visual Studio [23] – are the tools of choice for complex
software development. These environments strive to support the
full development cycle by combining a rich set of cooperating
tools such as visual user-interface builders, source-code editors,
compilers and debuggers. IDEs are instrumental in developing
individual components such as Java applications and Web
services, but they fall short in developing heterogeneous systems
consisting of multiple components.

IDEs organize software into projects, where a project typically
corresponds to a platform-specific software component, such as a
web service or its corresponding client. A distributed application,
however, comprises many such components, spanning many
projects. Thus there is a need to augment IDEs to effectively
manage collections of projects as coherent entities. Such tool
support should organize the collection of projects comprising the
application in a manner that reflects its logical structure and
facilitates common operations across the entire collection. To
support development of mobile applications, the tool should also
address mobility concerns that cut across the collection of
projects, like disconnection and device heterogeneity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobiSys’06, June 19–22, 2006, Uppsala, Sweden.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

In this paper we present Pegboard, a new tooling framework for
developing mobile distributed applications. Pegboard is built on
the Eclipse open-source platform [10], which provides an
extensible plug-in architecture that allows the integration of
software components from different providers. A wide variety of
Eclipse-based tools is already available, including the Java
Development Tools and the Plug-in Development Environment.
Pegboard is designed to leverage existing and future Eclipse-
based tools that have no knowledge of Pegboard. We chose the
name to suggest a physical pegboard on which workshop tools are
hung.

Our key contribution is a new approach to managing the
complexity of distributed mobile application development in an
IDE. The goal of the methodology we present is to enable IDEs
to treat these applications as coherent entities. Our approach
consists of the following ingredients:

• Organization: We arrange the code artifacts into a nested
composition of projects that reflects the logical structure of the
application and better supports code sharing among different
platforms.

• Visualization: We provide centralized views of the entire
distributed application – a view showing its design as a set of
interconnected computational nodes, and a view showing its
implementation as a nested collection of projects.

• Simplification: We make it easier to perform common
operations in the development cycle, such as launching all
components of the distributed application as a single operation.

• Guidance: We provide architectural patterns to help “jump-
start” development, and we orchestrate the development process
by leveraging other tools as needed, supporting top-down,
bottom-up and mixed design paradigms.

It is important to consider the target users in any software
endeavor. An additional contribution of this paper is to show how
user-centered design has helped improve Pegboard’s usability and
relevance.

The rest of the paper is organized as follows. Section 2 illustrates
the experience of using the Pegboard methodology to develop a
sample application. The architecture of Pegboard and
implementation details of the current prototype are described in
Section 3. Section 4 presents the user studies and feedback.
Section 5 provides a deeper discussion of some aspects, including
future directions. Section 6 discusses related work, and Section 7
concludes.

2. DEVELOPMENT METHODOLOGY
We start by briefly describing our abstractions and terminology.
Pegboard maintains both a design view and an implementation
view of the application. The design view is a graph, in which
each node is a sub-application. A sub-application represents a
part of the distributed application that runs on a single hardware
platform. Sub-applications are typed according to the kind of
computational node they represent (e.g., device, server, web
service). A sub-application contains functional components,
which represent software modules. The edges of the design graph
are connectors that represent communication links between sub-
applications. The implementation view shows the code artifacts,

also known as resources, and reflects the project structure of the
application, which is a tree. The root of this tree is a Pegboard
project, which contains a hierarchy of nested projects. Composite
Projects, developed as part of this work, provide the mechanism
for nesting projects.

To help explain our work in concrete terms, we present a sample
application called Order Entry, and show how Pegboard facilitates
its development. The elements of Pegboard are introduced in this
section, and elaborated upon in Section 3.

Order Entry is used by a sales person to submit purchase orders
through a mobile device to a central server. Orders specify a
customer, product, and quantity. When entered, the order is
queued locally on the device, and sent to the server as soon as
connectivity is available. As orders complete, the server confirms
them to the device. At any time the user can view the status and
history of orders. The Order Entry application comprises a Rich
Client Platform (RCP) [11] sub-application on the device, a Java
sub-application on the server, and Message Queue Everyplace
(MQe) [19] as the connection mechanism between the two. RCP
is a technology for building Java applications from components
called bundles. The bundles are managed by a runtime system
called OSGi [26]. The device sub-application is structured as
multiple OSGi bundles. MQe is a messaging technology that is
optimized for mobile environments with intermittent connectivity.

The first step in developing an application is to create a new
Pegboard project via the new-project wizard. Apart from the
project name, the developer chooses an application pattern,
possibly the empty pattern. The pattern shown in Figure 1, a
device-server with data connector pattern, best fits Order Entry.

Figure 1: Pegboard new-project wizard

The application pattern helps guide development by automating
the initial creation of design elements and associated code
artifacts. The design elements are shown in the graphical Design
Editor. The code artifacts and nested project structure are shown
in the Composite Explorer. Figure 2 shows the Design Editor and
Composite Explorer immediately after the Order Entry project has
been created.

The design diagram contains two sub-applications and a
connector between them. The sub-application icons indicate their
respective types: “device” and “server”. The Composite Explorer
shows the actual projects that have been created -- for the device,
the server, and code shared between the device and server. The
device and server projects, as well as the Order Entry project
itself, are Composite Projects that act as containers for other
projects.

Pegboard shows the association between design and
implementation elements by cross-selection. For example, F

 shows that when the “Device” sub-application is selected in the
design editor, the corresponding “Order Entry Device” project is
highlighted in the Composite Explorer.

igure
2

The next step is to create functional components for the device
and server sub-applications in the design editor, as illustrated in

. Each functional component corresponds to an Eclipse
project. In our implementation of Order Entry, the device sub-
application contains three OSGi bundle projects, and the server
contains a single Java project. Pegboard provides two ways to
associate a project with a functional component: by creating a
new project, or by incorporating a project that already exists in
the workspace.

Figure 3

Figure 3: Final design diagram for Order Entry

Figure 3 shows the final design diagram for Order Entry. Note
that the device-server connector now appears as a solid line,
which means that it has been mapped to implementation objects.
Also note the “MQe” annotation that helps document the design.

Figure 2: Pegboard Design Editor and Composite Explorer just after Order Entry project creation

Connectors in the design view typically correspond to multiple
components in the implementation view. In Order Entry, for
example, part of the device-server connector code is specific to
the device, part to the server, and part is shared between the two
(e.g., the message formats). shows the Composite
Explorer view of the completed Order Entry application. The
figure highlights the shared code component inside the Order
Entry Shared Area, and the references to it from the device and
server subprojects.

Figure 4

Figure 4: Final project structure for Order Entry

To facilitate testing and debugging of mobile distributed
applications, Pegboard supports launching of multiple projects
with one click. These launched projects typically run locally on
the development machine, but may be hosted remotely. In the
Order Entry application, for example, all the projects in both the
device and the server sub-applications can be launched with a
single click. Debugging tools and console views are available for
each of the launched projects through standard Eclipse
mechanisms.

Eclipse layer: The base Eclipse IDE is our starting point. It
includes a graphical user-interface framework, project-based
resources, and extensibility mechanisms such as plug-ins and
extension points.

Composite layer: Contains our new facility for grouping and
nesting Eclipse projects, sharing code between projects, and
aggregating common operations like launching. Composite
Projects are independently useful outside of Pegboard for
organizing multi-project development efforts.

3. ARCHITECTURE & IMPLEMENTATION Pegboard layer: Contains our new facility for mobile distributed
application development. It builds upon Composite Projects, and
adds higher-level notions including a design editor, application
patterns, design-to-implementation mappings, platform profiles,
and extensibility mechanisms for interoperating with other
development tools.

In this section we describe Pegboard’s architecture and provide
details about the implementation of the current prototype.

3.1 Overview
Pegboard is implemented as a set of plug-ins for the Eclipse
platform [7]. Pegboard is designed as an extensible framework
that interacts with other tools through Eclipse-based extensibility
mechanisms. It is structured in three main layers, as shown in

.

Figure 6

igure 2

igure 2

 shows the main architectural components of Pegboard.
The primary artifacts used by Pegboard, shown as ovals, are: the
design file (Order Entry.gph in F), which stores the
design diagram; the composite projects, which contain the code;
and the mapping data (.pegboard in F) that relates the
two. Application patterns are used to generate an initial version
of these artifacts. The Design Editor and Composite Explorer are
used for viewing and modifying these artifacts. The selection
mapper is responsible for displaying and maintaining the
mappings between the design and implementation spaces. The
composite launcher is responsible for running and debugging
Pegboard applications. Finally, the extension layer provides
extension points for connecting Pegboard to external Eclipse-
based tools through tool bridges, which serve as intermediaries.

Figure 5

Figure 5: Layered architecture of Pegboard

 Eclipse (base IDE, projects, plug-ins, …)

 Composite (nesting, sharing, launching…)

 Pegboard (design editor, mappings, patterns…)

Application Pattern
generate Selector/Generator

Design Composite Projects Composite
Launcher

Mapping Data

CompositeDesign
Explorer Editor

Mapper

Tool Extension Layer Bridge

External
Tool

s
Figure 6: Pegboard architectural component

3.2 Composite Layer
3.2.1 Grouping and Nesting
The base Eclipse platform partitions a developer’s workspace into
a flat space of projects. As a result, major user interface elements
of Eclipse, such as the Resource Navigator and the Package
Explorer, present the workspace as a simple list of projects. This
organization has severe limitations in the context of complex
software development efforts, in particular when developing
distributed mobile applications.

As mentioned earlier, mobile applications can be organized as a
collection of sub-applications, each of which is often complex
enough to warrant multiple projects. Consequently, workspaces
often grow to contain large numbers of projects whose
relationships to each other are not immediately apparent because
of their flat organization. There is a clear need for grouping and
nesting projects.

To address these limitations, we extended Eclipse with the notion
of Composite Projects (CPs). A CP is a project that can contain
other projects, including other CPs.

For example, the Composite Explorer view in F shows
how the “Order Entry” CP contains two other CP projects, “Order
Entry Device” and “Order Entry Server”, as well as the Java
project “Order Entry Shared Area”.

igure 2

ave linked resources

 that

-related code (Figure
Edition for the server

n for the device.

 generally applicable

 views of the CP hierarchy.

• They help developers to visualize the logical structure of

y allow a developer to hide portions of the workspace not

source folder to a shared area, and link to a source folder in a
and-drop versions of these operations are

CPs thus allow developers to organize an Eclipse workspace into
a hierarchy of projects. Such an organization has the following
benefits.

• It reflects the logical structure of applications.

• It serves to document and communicate between developers
the relationship between projects.

• It enables the tooling to aggregate operations, such as
building and launching the various components of an
application, into a single composite operation.

Our user studies (see Section 4) have confirmed that Composite
Projects help developers manage the complexity of large software
development efforts.

3.2.2 Code Sharing
As mentioned in the introduction, the sub-applications of a
distributed mobile application often share code. In the Eclipse
IDE, code can be shared between projects by having one project
depend on another. This method is widely used but has two
weaknesses: One, dependencies are hidden in property sheets so
that extra interaction is necessary to access them. Two, sharing is
at the coarse granularity of a complete project.

With Composite Projects we introduce a new approach to sharing
code between projects. A CP can be created with a specially
designated Shared Area. This area is accessible by all the
subprojects of that composite project, and subprojects can link to
code components placed in that shared area. The effect is that a
single physical copy of shared code resides in the shared area but
a link to shared code components appears in each subproject that
uses that component. We based our implementation on Eclipse

linked resources, reminiscent of symbolic links in the Unix file
system.

The code components in the shared area are organized as a set of
source folders. A shared component is accessed via a linked
resource to its source folder. A project may h
to any number of source folders in the shared area, depending on
which shared components it needs to access.

Composite Sharing addresses the two weaknesses described
above. First, shared code is always visible in each project
links to it because linked resources are first-class resources.
Second, sharing is at the finer granularity of a source folder.

Composite Sharing is particularly relevant to mobile application
development because it enables the same source code component
to be compiled into different binaries, each tailored to a different
target platform. Such specialization is possible because
ode appears in each project that links to it, and separate

compilation parameters are maintained per project. For example,
in the Order Entry application, shared MQe

shared
c

4) may be compiled for Java 2 Enterprise
and for Java 2 Micro Editio

3.2.3 User Interface
We created two major user-interface components, the Composite
Explorer and the Composite Viewer, to present to the developer
the grouping, nesting and sharing features of Composite Projects.
Figure 2 shows an example of the Composite Explorer, which
extends the standard Java Package Explorer. It provides a Java-
centric view of all resources as organized into Composite
projects, and gives access to the Composite operations. The
Composite Viewer is a simpler tool that offers an outline view of
the workspace down to the project level. It supports a subset of
the functions of the Explorer but is more
because it is not Java-specific. They both provide expandable and
collapsible tree

These user-interface components provide the following
functionality.

applications, including the relationships between projects, and
between projects and shared code.

• The
of immediate interest while leaving these portions within easy
reach.

• They provide access via menu items to all structural CP
operations including: create a CP, add subprojects to a CP,
remove subprojects from a CP, recursively delete a CP, move a

shared area. Drag-
planned.

3.2.4 Metadata
Composite Projects are compatible with base Eclipse –
introducing CPs does not break any existing plug-ins or
workspaces. We achieved this transparency by not modifying the
basic resource structure of Eclipse projects. Instead, the CP
model is realized by maintaining appropriate metadata. Each CP
stores information regarding itself and its immediate subprojects

in a .composite file. The CP model is an in-memory data
structure built by aggregating the information distributed across

plifies the issue of location of metadata files
by placing them within each project, rather than in an arbitrary

hared

Figure 7: Sample .composite file

the developer needs to first launch the Java server,
and then launch the rich-client application that submits orders to

eraging
Composite Projects, we have overcome the current Eclipse

nts to the sequential launch of the
subprojects contained in the composite project, each with its own

enables various test scenarios. The UI for

r each subproject in
e Composite Project. This saves the developer much work in
itially setting up the launch configuration.

 plifies the issue of location of metadata files
by placing them within each project, rather than in an arbitrary

hared

Figure 7: Sample .composite file

the developer needs to first launch the Java server,
and then launch the rich-client application that submits orders to

eraging
Composite Projects, we have overcome the current Eclipse

nts to the sequential launch of the
subprojects contained in the composite project, each with its own

enables various test scenarios. The UI for

r each subproject in
e Composite Project. This saves the developer much work in
itially setting up the launch configuration.

the .composite files. The model is a forest that reflects the
hierarchy of projects in the workspace.

The CP model drives operations such as adding and removing
projects from a hierarchy, visualizing the hierarchy, and
managing the development cycle by building and launching a
hierarchy. The decision to maintain a centralized model capturing
the project hierarchy, while keeping the metadata files distributed
across projects, was considered and is deliberate. It allows CPs to
be self-contained, and facilitates movement of a CP within the
hierarchy. It also sim

CPs to
be self-contained, and facilitates movement of a CP within the
hierarchy. It also sim

centralized location.

Composite metadata provides a general purpose mechanism for
storing attributes of a composite project. An attribute for a
composite project is stored as a name-value pair. This generic
mechanism is used, for example, to support the code sharing
facility described above by storing information about a s

centralized location.

Composite metadata provides a general purpose mechanism for
storing attributes of a composite project. An attribute for a
composite project is stored as a name-value pair. This generic
mechanism is used, for example, to support the code sharing
facility described above by storing information about a s
area in the .composite file, as shown in Figure 7. This mechanism
can be used for future enhancements to Composite Projects.
area in the .composite file, as shown in Figure 7. This mechanism
can be used for future enhancements to Composite Projects.

y Server"/>

name="shared"
 value="Order Entry Shared Area"/>

3.2.5 Launching
Part of the development cycle is to launch the developed
application for the purpose of testing and debugging. Since
mobile distributed applications contain multiple sub-applications,
to fully “launch” the application means to launch all of its
constituents. For instance, when testing the Order Entry
application,

3.2.5 Launching
Part of the development cycle is to launch the developed
application for the purpose of testing and debugging. Since
mobile distributed applications contain multiple sub-applications,
to fully “launch” the application means to launch all of its
constituents. For instance, when testing the Order Entry
application,

the server.

Eclipse provides a graphical interface for specifying the settings
to be used when launching an application, for example program
arguments. These settings are saved in a launch configuration,
which can be reused for subsequent launches. Lev

the server.

Eclipse provides a graphical interface for specifying the settings
to be used when launching an application, for example program
arguments. These settings are saved in a launch configuration,
which can be reused for subsequent launches. Lev

limitation of launching only a single application at a time.

The basic idea of our current implementation is to define a
composite launch configuration, which mirrors the nested
structure of a composite project. Such a launch configuration acts
by delegation: its launch amou

limitation of launching only a single application at a time.

The basic idea of our current implementation is to define a
composite launch configuration, which mirrors the nested
structure of a composite project. Such a launch configuration acts
by delegation: its launch amou

specified launch configuration

Our implementation has several improvements beyond the basic
idea. One, the developer can select which sub-projects to launch.

In the context of Pegboard this enables testing of subsystems of
the distributed mobile application. Two, the developer can
specify the launch order of subprojects within the composite

which

specified launch configuration

Our implementation has several improvements beyond the basic
idea. One, the developer can select which sub-projects to launch.

In the context of Pegboard this enables testing of subsystems of
the distributed mobile application. Two, the developer can
specify the launch order of subprojects within the composite

which project, project,
specifying these aspects of the launch configuration is shown in
Figure 8.

A default composite configuration can be created on the fly and
pre-populated with launch configurations fo

specifying these aspects of the launch configuration is shown in
Figure 8.

A default composite configuration can be created on the fly and
pre-populated with launch configurations fo
th
in
th
in

Figure 8: Launch configuration for Order Entry

 before and after

loading and is ready, as in the case of a server).

nts for a single server), and to support

applications and can then

remote launching and debugging of sub-projects. For example, a

To help better visualize the launch configurations for nested
composite projects, our extension offers both a flat and a
hierarchical view of the composite launch configuration. In the
current implementation, checks are performed

<?xml version="1.0" encoding="ASCII"?>
<project name="Order Entry">

<project name="Order Entry Device"/>
 <project name="Order Entr

<project name="Order Entry Shared Area"/>
 <property

launching each subproject. If one check fails, the whole
composite launch configuration is terminated.

When we asked developers how launching projects in Eclipse
could be improved, they cited the desire to launch projects in a
specified order. In Pegboard we offer the option of specifying a
custom order. Another feature that would enhance the automation
of launching is to provide some means of synchronizing the
launches. One developer suggested: “launch this after the CPU
load of the other has dropped” (since that often indicates the other
process is done

</project>

Even better would be if I could launch a project upon some output
from another.”

Besides the idea of synchronizing launches, some other planned
enhancements, stimulated by discussions with developers, are to
add more launch parameters such as timing delays between
subproject launches and instance counts to facilitate stress testing
(e.g., multiple clie
“Composite halt”, which would terminate all constituents of a
Composite launch.

We can extend these ideas beyond composite projects, to create
confederated launch configurations that are independent of the
Eclipse project structure. Our implementation can be readily
reapplied to support this. Through this the developer can create
launch configurations for individual
mix and match the individual configurations to create a wealth of
test scenarios that can be reused.

Aggregated launching and debugging of Pegboard applications is
supported by individual project launchers that allow local or

web-service project can be set up to launch on a web server
running on a remote machine. Additionally, Eclipse facilities for

urther guide the
development of distributed mobile applications.

3.3 Pegboard Layer

g such a view is useful

y client (Figure 3), each bundle

plications. Disconnection is further discussed in

these mapping patterns; other

isting project or by triggering the creation of a new

evolves is an important
challenge further discussed in Section 5.

eas like real-time programming or user interface

uous use of design diagrams throughout

tory of common application

application pattern at the

nd mapping

a repository of patterns that can be easily

remote Java debugging can also be leveraged.

In summary, our new Composite Projects facility helps organize,
visualize, and simplify the development of multi-project
applications by reflecting the logical structure of applications,
facilitating sharing of resources, and enabling aggregation of
common operations such as building, launching and version
control. Pegboard builds on this facility to f

3.3.1 Application Design & Implementation
A key feature in Pegboard’s development process is the ability to
work with both the design and implementation of a mobile
distributed application. The implementation view shows the
actual artifacts (called resources in Eclipse) that comprise the
application; it captures the code structure in terms of projects,
packages, classes, files and so on. This view leverages Composite
Projects as the mechanism for organizing the set of projects that
constitute a Pegboard application. The design view describes the
architecture of the application as a graph of communicating
nodes. Our user studies confirm that havin
when developing distributed applications.

The Design Editor (Figure 2) provides a graphical view of the
application. Each node in the design view is a sub-application,
which corresponds to a program that interacts with other
programs in a distributed application. Sub-applications are typed,
to help denote the kind of computational node they represent,
such as a device, a server or a Web service. A sub-application
contains one or more functional components, each of which is a
programmatic unit that is a meaningful part of the design. This
definition is intentionally vague, since Pegboard aims to support a
wealth of development approaches. For example, if the sub-
application has a Model-View-Controller structure, each of the
three parts (model, view, controller) may be a functional
component. In another example, if the sub-application is bundle-
based [26], as is the Order Entr
may be a functional component.

The edges of the design graph are connectors, each of which
represents a communication channel between two sub-
applications. Connectors can represent many different
communication technologies, such as HyperText Transport
Protocol (HTTP), Simple Object Access Protocol (SOAP) and
Message Queue (MQ). Connectors may also support
disconnected operation, which is an important capability for
mobile ap
Section 5.

To relate the two views, Pegboard maintains mappings between
design elements and implementation elements. These mappings
need not be 1-1. Mappings are generated whenever design
elements are created, and are used to help guide the developer.
One form of guidance we have implemented is cross-selection:
when an element is selected in the design editor, the
corresponding elements are highlighted in the composite explorer;
similarly, selection in the composite explorer triggers appropriate
highlighting in the design editor. Figure 2 shows cross-selection

between the design object “Device” and the implementation
object “Order Entry Device”. In the development scenarios we
have pursued so far, sub-applications are mapped to Composite
projects, functional components are mapped to non-Composite
projects, and connectors are mapped to multiple Java packages in
several projects, as their implementation is typically split between
the projects implementing their endpoints. It is important to note
that Pegboard does not impose
patterns may evolve in the future.

If a design object is not mapped, it is considered unrealized, and
is visually grayed out in the design editor (or dashed, in the case
of a connector). For example, a functional component can be
created by dragging a functional component icon from the design
editor palette into an existing sub-application on the canvas. The
resulting functional component is unrealized. At a later time,
when the developer maps this functional component, it becomes
realized. Mapping can be done through a context menu entry in
the design editor, either by associating the functional component
to an ex
project.

Maintaining the mappings as the code

3.3.2 Application Patterns
Patterns are recurring solutions to problems that arise in a certain
context. They are an expert's choice when solving a certain type
of problem. The state-of-the-art in a given domain is documented
in pattern catalogs. The concept of reusing design insights became
widely popular in the software engineering community during the
last decade. Although the most well known catalog of patterns
 [10] addresses design issues for object-oriented applications,
patterns can be identified in all parts of the development process –
analysis, architecture, design, coding – as well as across specific
application ar
construction.

Complex distributed applications are often designed using
recurring configurations that represent the basic application
components and communication links between these components.
We refer to these recurring configurations as application patterns.
Pegboard both simplifies and accelerates the design process and
offers interactive, contin
the project lifecycle by:

• Maintaining an extensible reposi
patterns for distributed applications,

• Enabling the user to select an
beginning of the design process, and

• Automating creation of design, implementation a
elements according to the chosen application pattern.

An application pattern in Pegboard can be regarded as a graph in
which the nodes correspond to sub-applications and the edges
correspond to connectors. The pattern graph is annotated with
additional information such as sub-application names and types,
connector protocols, names of associated resources, etc.
Pegboard maintains
extended.

As shown in Figure 1, the Pegboard new-project wizard lets the
developer select an application pattern. Once selected, a
corresponding graph is loaded. The application design is
automatically created according to the chosen pattern by
traversing the pattern graph. The structureucture and attributes of the

cal representation of the chosen pattern in the design

• The mapping of elements in the design editor to the resources

 the wizard, the design is created according to
the chosen pattern and the user can continue with the specific

o

llenge of being able to “snap in” external tools
ithout having to modify them and without having Pegboard
epend on them.

Figure 9: Pegboard extension architecture (arrows show

tor and selection

d project inside

 mentioned above invokes the Java

ls know nothing about Pegboard, yet are able to
contribute effectively to the Pegboard-orchestrated development

 extension
layer, so that it can be reused for different tools. Further

.

 methodology
for engaging users in the design and development of systems is

 their work. The surveys included

several project groups at the same time would be good. A

 and attributes of the

cal representation of the chosen pattern in the design

• The mapping of elements in the design editor to the resources

 the wizard, the design is created according to
the chosen pattern and the user can continue with the specific

o

llenge of being able to “snap in” external tools
ithout having to modify them and without having Pegboard
epend on them.

Figure 9: Pegboard extension architecture (arrows show

tor and selection

d project inside

 mentioned above invokes the Java

ls know nothing about Pegboard, yet are able to
contribute effectively to the Pegboard-orchestrated development

 extension
layer, so that it can be reused for different tools. Further

.

 methodology
for engaging users in the design and development of systems is

 their work. The surveys included

several project groups at the same time would be good. A

pattern graph drive the generation of design and implementation
objects in Pegboard. This process involves:

• A graphi

pattern graph drive the generation of design and implementation
objects in Pegboard. This process involves:

• A graphi
editor that allows the user to extend and/or refine the design of the
application.
editor that allows the user to extend and/or refine the design of the
application.

• The resources that will contain the final implementation of the
components.
• The resources that will contain the final implementation of the
components.

holding their implementation, and vice versa.

Upon termination of

holding their implementation, and vice versa.

Upon termination of

application design. application design.

3.3.3 Extensibility
Pegboard incorporates Eclipse-based tools external to Pegboard
into the development process. It strives to give the flexibility t

3.3.3 Extensibility
Pegboard incorporates Eclipse-based tools external to Pegboard
into the development process. It strives to give the flexibility t
work with external tool components as needed, while providing
sufficient structure to help orchestrate the development process.

Figure 9 shows Pegboard’s extension architecture, which
addresses the cha

work with external tool components as needed, while providing
sufficient structure to help orchestrate the development process.

Figure 9 shows Pegboard’s extension architecture, which
addresses the cha
w
d
w
d

plugin dependencies) plugin dependencies)

The Pegboard extensibility subsystem has the following layers.

The Pegboard Core Layer contains the Pegboard building
blocks as described so far, such as the design edi

The Pegboard extensibility subsystem has the following layers.

The Pegboard Core Layer contains the Pegboard building
blocks as described so far, such as the design edi
mapper. This layer contains the common features that are
applicable to all distributed application projects.

The Pegboard Extension Layer contains extension points for
invoking and leveraging other tools from Pegboard, and common
behavior associated with each extension point. Extension points
are fundamental in Eclipse’s plugin architecture [10], and let a

plugin developer define declaratively how one plugin can extend
the behavior of another. For example, Pegboard has an extension
point for creating a functional component inside a sub-
application, S. The implementation object for the functional
component is created by a new-project wizard residing in an
external tool, where the type of functional component (Java
project, bundle project, etc.) determines which wizard is invoked.
The common behavior is to create a functional component inside
S (in the design space), to nest the newly create

mapper. This layer contains the common features that are
applicable to all distributed application projects.

The Pegboard Extension Layer contains extension points for
invoking and leveraging other tools from Pegboard, and common
behavior associated with each extension point. Extension points
are fundamental in Eclipse’s plugin architecture [10], and let a

plugin developer define declaratively how one plugin can extend
the behavior of another. For example, Pegboard has an extension
point for creating a functional component inside a sub-
application, S. The implementation object for the functional
component is created by a new-project wizard residing in an
external tool, where the type of functional component (Java
project, bundle project, etc.) determines which wizard is invoked.
The common behavior is to create a functional component inside
S (in the design space), to nest the newly create
the Composite project corresponding to S (in the implementation
space), and to create a mapping between the two.

Tool Bridges mediate between Pegboard and external tools. A
tool bridge is a small dedicated plugin that knows about both
Pegboard and the external tool to which it bridges. In particular,
it provides the functionality required by a Pegboard extension
point, appropriately delegating to the external tool without
requiring Pegboard to depend on that tool. For example, the Java
bridge for the extension point

the Composite project corresponding to S (in the implementation
space), and to create a mapping between the two.

Tool Bridges mediate between Pegboard and external tools. A
tool bridge is a small dedicated plugin that knows about both
Pegboard and the external tool to which it bridges. In particular,
it provides the functionality required by a Pegboard extension
point, appropriately delegating to the external tool without
requiring Pegboard to depend on that tool. For example, the Java
bridge for the extension point
new project wizard in order to create a Java project implementing
a new functional component.

External Tools live outside the Pegboard code base. Ideally,
these too

new project wizard in order to create a Java project implementing
a new functional component.

External Tools live outside the Pegboard code base. Ideally,
these too

process.

In this architecture, the lower the layer containing the code, the
more reusable and broadly applicable it is. In particular, we strive
to move code from the tool bridges to the Pegboard

process.

In this architecture, the lower the layer containing the code, the
more reusable and broadly applicable it is. In particular, we strive
to move code from the tool bridges to the Pegboard

discussion of extensibility issues appears in Section 5discussion of extensibility issues appears in Section 5

4. USER STUDIES & FEEDBACK
Determining how and where to improve the environment for
developers working on mobile distributed applications requires
some analysis to learn how developers do their work. To help
narrow the scope of our effort, we obtained input from developers
during the initial phase of our project. We conducted phone
interviews, surveys, and exercises with developers who work with
complex projects, many of them mobile application projects, so
they could help us assess the kinds of tasks that could feasibly be
addressed and simplified with good tooling. This

4. USER STUDIES & FEEDBACK
Determining how and where to improve the environment for
developers working on mobile distributed applications requires
some analysis to learn how developers do their work. To help
narrow the scope of our effort, we obtained input from developers
during the initial phase of our project. We conducted phone
interviews, surveys, and exercises with developers who work with
complex projects, many of them mobile application projects, so
they could help us assess the kinds of tasks that could feasibly be
addressed and simplified with good tooling. This

Tool 1

Tool Bridge 1 Tool Bridge 2 Tool Bridge n

Tool 2 Tool n

Pegboard Extension Layer

Pegboard Core commonly referred to as user-centered design [24].

We conducted a survey with sixteen developers to understand
how they evaluated their programming experiences with Eclipse
and how well Eclipse supports

commonly referred to as user-centered design [24].

We conducted a survey with sixteen developers to understand
how they evaluated their programming experiences with Eclipse
and how well Eclipse supports
fourteen questions and were administered in face to face
interviews and through email.

Of those questioned, 63% felt that Eclipse supports the way they
develop well and 19% claimed that it supports their work very
well. However, upon deeper inspection we learned that there
were deficiencies in how they could organize their code, in the
effort required to find their code, in features that support sharing
code, and in the launching of their projects. These lapses were
particularly apparent when working on multiple projects. When
asked which features could be improved one participant replied:
“An actual notion of project groups would be nice. Opening

fourteen questions and were administered in face to face
interviews and through email.

Of those questioned, 63% felt that Eclipse supports the way they
develop well and 19% claimed that it supports their work very
well. However, upon deeper inspection we learned that there
were deficiencies in how they could organize their code, in the
effort required to find their code, in features that support sharing
code, and in the launching of their projects. These lapses were
particularly apparent when working on multiple projects. When
asked which features could be improved one participant replied:
“An actual notion of project groups would be nice. Opening

hierarchy of project groups would be even better.” These and
other comments provided us with validity and support to pursue

having these diagrams persist throughout the

notes on the

ering, and

 around the large number of projects MUCH easier.

ers manage the complexity of large software

r “field data”, help
carve out a course for a successful tool [18].

design
issues, and describe our thoughts for future enhancements.

 (JVM) version and the set of libraries provided by a

 the development of any

ame platform profile, the entire

ny

our efforts with Composite Projects.

In face-to-face interviews, we also asked developers to draw a
design diagram of a system as described by a supply chain
scenario we created. The scenario consisted of multiple parties
interested in obtaining oranges from a distributor. One goal of this
exercise was to see how they graphically capture system elements
in a diagram, and to verify that the Pegboard design editor can
support these features. A second goal was to validate a hunch we
had on the value of
development cycle.

Often developers make rough sketches of systems on their white
board. From the diagrams we collected during our testing we
could immediately see that the features we offer in the design
editor do support the basics of how developers graphically
express systems. We also learned that support for unstructured
annotations is valuable. Such capability is supported by the
design editor in the form of element descriptions and
canvas (such as the “MQe” annotation in Figure 3).

After speaking with developers, who often need to return to the
code of past projects, we were motivated to test the usefulness of
these diagrams a bit further. After four weeks we showed our test
users the same diagrams they drew of the system in our scenario.
Without giving them any advance notice or any additional
documentation we asked them to describe the system by looking
at what they drew. One participant was able to immediately recall
all details of the system, but others had to pause for a moment and
try to read their writing. Participants who had indicated a sense
of flow by numbering their elements as a means for describing the
flow, were better able to recall the functional details. Through
this exercise we could see how the diagrams could serve as an
ongoing interactive artifact for understanding, rememb
communicating the fundamental objects of the system..

When the Composite Projects feature was ready for release we
packaged it separately and gave it to developers to try out. This is
an important stage of the process, since it gives us an opportunity
to iterate on the design with feedback from actual users trying out
the feature with real code. One developer, who had close to 200
projects in his workspace, said that Composite projects “made my
navigating
Thanks!”

Also, through his usage we quickly found an oversight. We had
not enabled scrolling through a project list in the “Add
Subprojects” dialog. We had overlooked this need, since it arises
only in very large workspaces. By putting Composite Projects
into a real work environment we were better positioned to refine
the interface in many ways. It also confirms that Composite
Projects help develop
development efforts.

The user-centered design methodologies we employed during the
course of developing Pegboard were valuable and necessary for
keeping two distinct technical groups in touch with each other
 [31]. By engaging with such developers, who had needs and
styles distinct from ours, we were able to maintain a level of
realism for our efforts. It is easy to imagine how other developers
may work and it is presumptuous to assume that your

development style is naturally the same as those who will be
using the tool you build. We explicitly wanted to avoid these
mishaps, by having the two sets of developers communicate with
each other especially during the design stage of the project.
Communication was in the form of written responses to questions,
phone conversations, electronic demonstrations, and observations
while using the tool. All kinds of input, o

5. DISCUSSION & FUTURE WORK
In this section we look deeper into some of Pegboard’s

5.1 Platform Profiles
Platform profiles support the deployment of a sub-application on
a target run-time platform and ensure that the sub-application
code runs on the target platform. This feature supports distributed
applications where one or more parts run on resource-constrained
mobile devices with limited run-time environments. The
capabilities of the execution environment that can be used by an
application component at run-time are captured in a platform
profile. An example for this information is the Java Virtual
Machine
device.

Pegboard takes a top-down approach for profile support. For a
particular sub-application, the user selects the platform profile
that corresponds to the execution platform on which the sub-
application is to be deployed. The sub-application’s platform
profile is shared by all functional components within this sub-
application. It sets the boundaries for
code within the functional components.

Pegboard integrates external tools that act as individual
development platforms and support the development of a
particular application types. Functional components in the design
space are associated with projects in the implementation space
that are managed by corresponding external tools. The selected
platform profile specifies the environment in which the functional
component code is to be run. The target platform capabilities are
translated into project settings that drive the compilation of the
source code (e.g. JVM and classpath settings for a Java project).
When the functional component code is compiled using these
settings, the result is targeted to the chosen run-time environment
ensuring that the implemented code can be executed. Since all
functional components share the s
sub-application can be deployed.

We have implemented the described mechanism as a prototype
for functional components associated with Bundle Development
Toolkit (BDK) within Pegboard sub-applications of the type
“device”. The platform profile is represented using Composite
Capabilities/Preference Profiles (CC/PP) [7]. Like UAProf [32],
the prototype uses a specific CC/PP vocabulary. Its attributes
describe the JVM and the set of bundles to be used by the BDK
projects. From the sub-application level they are passed as
requirements when the functional component and its BDK project
are created and ensure that the code will not have a
dependencies that cannot be satisfied by the selected platform.

We plan to extend the prototype implementation to other sub-
application types and functional components associated with other
tools. We note that there is a relationship between the type of a
Pegboard sub-application and the CC/PP vocabulary of the
platform profile. Extending the scope also requires knowledge
about the compilation and deployment mechanisms of external
tools for correct translation of platform profile attributes to project
settings, and the existence of suitable APIs for applying these

 drive various aspects

 in the shared

e (as

from the WSDL generate SOAP classes for the

 would be

xplore is whether supporting a directional

 pertaining to one
of its endpoints (e.g., “show me the client-related communication

de for the connector.

nal tool is absent in a given Eclipse installation, Pegboard

ereby computing the new project name. This can be

 A less elegant, but often
required approach is to have the tool bridge detect inconsistencies

ntion.

and implementation) is looser than that of

d project based

hem from the Pegboard project (by
om the containing Composite project). This last choice

renaming of implementation elements, we extended Eclipse’s

settings in the external tools.

5.2 Connectors & Disconnection
The implementation of connectors is typically spread across
multiple sub-applications. By having an explicit representation
for connectors in the design diagram, we can
of connector-related development through the design editor. Here
are a few such aspects we have considered.

Generic creation: A generic wizard creates code regions for
placing the connector-related code, and maps them to the
connector design element. These regions belong inside the
subprojects corresponding to the two endpoints and
area. The outcome of the wizard may involve creation of new
projects and corresponding functional components.

Protocol-specific creation: A tool-specific wizard (in a tool
bridge) extends the generic creation wizard and also generates
protocol-specific boilerplate code. For example, for MQ
used in Order Entry) it can generate code in the shared area,
which performs queue management and message transport.

Data modeling: The schemas of messages flowing along the
connector can be modeled in a tool-specific manner. For
example, the tool can help create a Web Services Description
Language (WSDL) specification for a web-service sub-
application, and
connector between the web-service sub-application and a device
sub-application.

Disconnection support: Data modeling can apply to models that
support disconnection through model-based replication, such as
SDOSync [6]. In this case, synchronization agents
generated for both ends of the connector, and the SDO modeler
would generate the SDO classes to be shipped across.

In the current design, connectors are represented symmetrically,
as bidirectional arrows in the design editor. It is possible that a
directional representation better fits cases in which the
communication is highly asymmetrical, such as HTTP client and
server. An area to e
representation would improve usability of Pegboard and facilitate
additional functions.

An additional function that may prove useful is, upon selection of
a connector, to only highlight the code artifacts

code”) or to the shared co

5.3 Extensibility
Pegboard’s extensibility architecture enables it to interact with
external tool components, as explained in Section 3. The
challenge is to be able to connect to external tools that know
nothing about Pegboard, avoid having Pegboard depend on them,

and yet to deliver an integrated development experience. The tool
bridges create the desired buffer: the bridge depends on Pegboard
and on the tool it mediates. An outcome of this design is that if
the exter
continues to operate correctly, except that the missing tool is not
visible.

A limitation of this approach is that the tool bridge is restricted by
the externals of the tool: its public interfaces and its observed
behavior. In some cases we need to be cunning in working around
this limitation. For example, when launching an external wizard
to create a functional component, Pegboard needs to know the
name of the new project created. Since this information is not
generally available through the wizard API, we provided the
heuristic solution of inspecting the workspace project before and
after, and th
overwritten by tool bridges that can get the information more
accurately.

Another facet of this limitation is the possible difficulty in
affecting the external tool’s behavior as a result of actions
orchestrated by Pegboard. Again, doing this successfully may
require deep familiarity with the tool’s interfaces so as to set
parameters and data beforehand.

and request developer interve

5.4 Code Evolution
A key feature of Pegboard is the ability to work with both design
and implementation views of the application, and the mappings
between them. Keeping the mappings up-to-date throughout the
development cycle is essential to having a “live” design view.
This issue is reminiscent of the “round trip” problem in software
development [22], where a high-level representation (e.g., UML
model) generates a lower-level one (e.g., source code), and needs
to be kept in sync when the lower-level representation is changed
(e.g., when editing the source code directly). The case of
Pegboard is interesting in that the relation between the two
representations (design
one being generated from the other, yet still needs to be updated
as the artifacts evolve.

The following mechanisms help keep the Pegboard mappings
updated:

Initial generation: When creating a new Pegboar
on an application pattern, design and implementation elements are
generated, as well as the mappings between them.

Structured operations: Performing structured operations through
the design editor, such as creating new sub-applications,
connectors or functional components, triggers generation of
corresponding elements in the implementation space as well as
the mappings to them. When deleting a design element, a wizard
should prompt the developer as to the fate of the corresponding
implementation elements: keep them, delete them (actual resource
deletion), or just remove t
removal fr
is probably best as default.

Rename: When renaming an element in the design editor, the
mapping information is updated accordingly. To support

refactoring [12] framework. Whenever the developer performs a
rename project refactoring, our extension updates both the

e

 whether to keep the design element(s) mapped to those

evolution of the pattern throughout the development
cycle.

 to the

mit. Currently

osite projects as presented in Section 2,

a team to use the same
hierarchy of composite projects, or to use composite projects at

obile
space [20]. Distributed agent-based systems such as JADE have

t
takes two forms: a disconnected client for Personal Digital

 plan to explore how well Pegboard

Composite metadata and the mapping information.

Pegboard has to be vigilant in updating the design space and
mappings in response to changes in the implementation space, so
as to ensure a tight correspondence between the spaces. The
following approach can be implemented by registering Eclips
resource listeners, and specific listeners on Composite projects.

Adding artifacts in the implementation space: The listeners
prompt the developer as to whether to create corresponding
design elements. If so, the system also creates the appropriate
mappings. In addition, there needs to be an option to add a
mapping to an existing design element; this is especially
important for connectors, which may have complicated mappings.

Removing artifacts in the implementation space: The listeners
remove any mappings to the removed artifacts and prompt the
developer
artifacts.

In addition to the automatic and semi-automatic mechanisms
listed above, Pegboard can provide manual facilities for easily
adding and removing mappings. For example dragging an
element from the Composite Explorer and dropping it onto an
element in the design editor can ask whether to create a mapping.

Finally we note that evolution techniques may be applied to the
application pattern. The current implementation does not use the
pattern after initial creation of the application. It may be useful to
trace the

5.5 Collaboration
Supporting collaboration between programmers is an important
function of any software development environment. Pegboard
can augment the collaboration support already in Eclipse by
enabling aggregate operations on hierarchies of projects, in
addition to the existing operations on individual projects. This
support can be achieved with straightforward additions
Composite layer in the current Pegboard implementation.

More specifically, Eclipse provides what it calls team operations
built on top of an external version control system such as the
Concurrent Versions System (CVS) [8]. Eclipse allows a
developer to synchronize his local copy of source code to a
repository shared with other developers and maintained by CVS.
In this regard the Eclipse user interface exposes common CVS
operations such as check out, update, and com
these operations apply to single Eclipse projects.

We plan to extend Eclipse team operations to make them aware of
the composite project hierarchies enabled by Pegboard. Thus, for
example, invoking an update operation on a composite project
would recursively perform an update operation on the tree of
projects rooted at that composite project. Aggregating team
operations in this way is similar to aggregating launching
operations as described in Section 3.2.5. We do not foresee any
problems in adding these composite team operations to Pegboard.

There is an attractive collaboration-related aspect of Pegboard
that is already available in the current implementation. Namely, it

is possible for different developers on a team to organize the same
set of Eclipse projects into different hierarchies of composite
projects, or indeed for some developers to use composite projects
and others not to use them. For example, one developer working
on the Order Entry application may choose to organize her
workspace into comp
while another may choose to leave his workspace as a flat
collection of projects.

This flexibility is made possible by our choice to base composite
projects on metadata additions to Eclipse rather than on changing
the underlying Eclipse project structure, as described in Section
 3.2.4. As a result, the source code repository stores self-contained
Eclipse projects that are independent of any structure imposed by
the separately stored metadata. Composite projects are
themselves stored in the repository as standalone Eclipse projects
containing only metadata that refers to other projects. One
developer can therefore check out one set of projects while
another developer checks out another set. The fact that Pegboard
does not force every developer on

all, lowers the barriers to its adoption.

5.6 Mobile Application Models
A challenge in developing mobile computing applications is that
they employ a broad spectrum of programming models. In the
disconnected operation model, the application runs locally on the
mobile device, and synchronizes code and data with a server
when connected to a host PC. The lack of network dependency
accommodates a responsive user experience that is unhindered by
network delays, but is limited to the data available on the mobile
device. On the other end of the spectrum, a pure browser-based
application requires a server connection to deliver its function, but
often provides a poorer user experience, especially in older
technologies such as WAP [21]. Nevertheless, the high degree of
connectivity is compelling, and has made the browser-based
model successful in certain markets, such as i-mode in Japan [25].
Browsers have been enhanced to provide a richer user experience
and be less dependent on connectivity. Examples are the AJAX
model [15], which employs device-side scripting and asynchro-
nous operation, and the forms-based model, which utilizes a
device-side processor to interpret a forms language, such as
XForms [29] or InfoPath [30]. Extending beyond the browser is
the distributed rich client model, in which first-class application
components run on the client devices as part of a traditional
distributed application [11]. Multimodal applications, such as
those including voice interaction, are also appealing in the m

also been utilized in the mobile space [2].

A further challenge is that individual applications sometimes span
more than one of these models. For example, the Vindigo clien

Assistants (PDAs) and a custom browser for mobile phones [4].

Pegboard attempts to address these challenges by providing a
general, extensible solution that is agnostic to programming
model. This approach is in contrast to model-specific solutions
such as the Multi-Device Authoring Technology [1] and
HopiXForms [5]. We

accommodates different models by using it to build a wide range

6. RELATED WORK
ntrate on several systems that have goals

 .NET applications and Web

application components to logical servers in a

at the graphical level.
Finally, leveraging affordances of the Eclipse platform, Pegboard

clipse-

tures that can be used across domains. This
effort could be used in concert with Pegboard’s organizational

further code reuse and sharing throughout the

id-level design level patterns that
contain classes and relationship among classes, whereas Pegboard

ntain projects and

Pegboard provides a veneer over
existing tools within an IDE, does not impose a specific language-

representation

icrosoft,
IBM and BEA. Pegboard supports service-based components

plications), but does not impose a

oves their experience
when dealing with large development efforts. We hope that this

er tools for building

 valuable input and guidance. Richard
Cardone and Norman Cohen provided many insightful comments
on the manuscript; we thank them for their considerable effort in
reviewing this paper.

of mobile applications.

In this section we conce
or features similar to Pegboard

6.1 Whitehorse
Whitehorse is a suite of novel graphical tools for developing
distributed applications [16] which has become part of the Visual
Studio 2005 Team System product line. Microsoft Visual Studio
is an IDE for developing a wide range of applications in different
programming languages (Visual Basic, C#, J#, and C++). It
offers many pre-defined projects for different application types
ranging from console applications to
Services. The main focus in the beta release of MS Visual Studio
2005 Enterprise is on distributed applications based on web-
services with RPC-based data flow.

The Whitehorse suite uses a top-down development approach, and
provides graphical tools for individual tasks during the design and
deployment phase. The Application Connection Designer (ACD)
defines application components in a diagram. Components can be
connected with each other, their (SOAP) interfaces can be
defined, and the dataflow between them can be specified. The
ACD also supports generation of projects, source files, and
skeleton code for the defined components. The System Designer
is used to compose systems from applications defined via the
ACD. Larger systems can be created by nesting existing smaller
units. Using the Logical Datacenter Designer the user can define
topologies of interconnected servers on which individual
application components will be hosted. The Deployment Designer
binds distributed
target datacenter. Once these bindings are defined for all
components, deployment of the application on a logical datacenter
can be validated.

Like Pegboard, Whitehorse supports graphical design of
distributed applications. The graphical editors that allow the user
to compose the application design are key components in both
platforms. Important differences pertain to pattern support,
application structure, and extensibility. Unlike Pegboard,
Whitehorse does not support commonly recurring patterns for
distributed applications, and hence the design process starts from
scratch for new applications. Pegboard sub-applications contain
multiple functional components, whereas application components
in Whitehorse do not have further structure

is itself an open extensible framework, into which other E
based development tools can be integrated.

6.2 Concern Manipulation Environment
The Concern Manipulation Environment (CME) is a framework
that extends the Eclipse platform for decomposing and managing
software into reusable and meaningful parts [17] [27]. As an
approach for supporting software evolution by creating
encapsulated concerns out of existing software, it helps the
developer create fea

features to facilitate
software lifecycle.

6.3 Together
Borland bought TogetherSoft and further developed their main
product, Together [2], which is a modeling tool that provides a
synchronized view between the design and the implementation
level. It generates stubs for any design that a developer selects
from its own catalog of design patterns, similarly to Pegboard.
However, the scope of the patterns is different between the two
tools: Together deals with m

deals with architectural patterns that co
relationships among projects.

6.4 Component-Based Systems
Component-based systems are used to assemble applications from
components. As such, they provide means for building
distributed applications, since the components may run on
multiple computing nodes. Fuentes and Troya [13] describe an
integrated development environment for building multimedia and
collaborative applications based on the MulitTEL component-
based framework. At the core of their approach is an Architecture
Description Language (ADL) for defining and composing
components. They leverage the ADL for delivering integrated
tools such as a visual builder and component directory. In
contrast to this approach,

driven methodology, and provides a more explicit
of the computational nodes.

6.5 Service-Oriented Architectures
Like component-based systems, Service-Oriented Architectures
(SOA) provide a uniform abstraction of distributed applications as
a set of interacting services [9] [28]. Tools supporting SOA are
provided by many of the industry players, including M

(e.g., via Web Service sub-ap
service-oriented structure for the applications it creates.

7. CONCLUSIONS
In this paper we have presented a tooling framework that extends
the Eclipse IDE to support structured development of mobile
distributed applications. Pegboard helps manage the development
complexity through visualization, simplification, organization and
guidance throughout the development cycle. Early feedback from
developers indicates that Pegboard impr

work raises awareness of the need for bett
mobile systems, applications and services.

8. ACKNOWLEDGEMENTS
Sébastien Demathieu was instrumental in developing an earlier
version of Composite Projects. Guru Banavar helped motivate the
Pegboard effort. Dave Bevis, David Lection, Pierre Carlson and
Jim Colson provided

9. REFERENCES

[1] G. Banavar et al. An Authoring Technology for Multi-

Device Web Applications, IEEE Pervasive Computing, Vol.
3, No. 3, July/September 2004.

[2] M. Berger, S. Rusitschka, D. Toropov, M. Watzke and M.
Schlichte, “Porting Distributed Agent-Middleware to Small
Mobile Devices”, AAMAS Workshop on Ubiquitous Agents
on Embedded, Wearable and Mobile Devices, Bologna, Italy,
July 2002.

[3] Borland Together Technologies
http://www.borland.com/us/products/together

[4] R. Cáceres, J. Donham, B. Fitterman, D. Joerg, M. Smith and
T. Vetter, “Mobile Computing Technology at Vindigo,”
IEEE Wireless Comm., Vol. 9, No. 1, February 2002.

[5] R. Cardone, D. Soroker, A. Tiwari, “Using XForms to
Simplify Web Programming”, Proc. 14th Intl. Conference on
the World Wide Web (WWW ‘05), Chiba, Japan 2005, pp.
215-224.

[6] P. Castro, F. Giraud, R. Konuru, A.Purakayastha, D. Yeh, “A
Programming Framework for Mobilizing Enterprise
Applications”, Proc. 6th IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA), English
Lake District, UK 2004, pp.96-205

[7] Composite Capability/Preference Profiles (CC/PP): Structure
and Vocabularies 1.0. W3C Recommendation, 15 Janauary
2004, http://www.w3.org/TR/CCPP-struct-vocab .

[8] Concurrent Versions System (CVS)
http://www.cvshome.org/ .

[9] F. Curbera, D. Ferguson, M. Nally and M. Stockton,
“Toward a Programming Model for Service-Oriented
Computing”, Proc. International Conf. on Service-Oriented
Computing (ICSOC ‘05), Amsterdam, The Netherlands 2005,
pp. 33-47.

[10] Eclipse. http://www.eclipse.org .
[11] Eclipse Rich Client Platform http://www.eclipse.org/rcp .
[12] M. Fowler, Refactoring: Improving the Design of Existing

Code, Addison-Wesley, 1999
[13] L.Fuentes and J.M. Troya, “Coordinating Distributed

Components on the Web: an Integrated Development
Environment”, Software Practice and Experience, Vol. 31
No. 3, Jan. 2001, pp. 209-233.

[14] E. Gamma , R. Helm , R. Johnson , J. Vlissides, Design
patterns: elements of reusable object-oriented software,
Addison-Wesley, 1995

[15] J.J. Garrett, “Ajax: A New Approach to Web Applications”
http://www.javalobby.org/articles/ajax/

[16] B. Gibson and A. Thorne: Visual Studio 2005 Team System:
Designing Distributed Systems for Deployment. MSDN
Library Article,
http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/dnvsent/html/vsts-arch.asp .

[17] W. Harrison, H. Ossher, S. Sutton and P. Tarr, “Supporting

Aspect-Oriented Software Development with the Concern
Manipulation Environment”, IBM Systems Journal, Vol. 44,
No 2, 2005, pp. 309 – 318

[18] K. Holtzblatt, “Designing for the Mobile Device:
Experiences, Challenges, and Methods”, CACM, Vol. 48,
No. 7, July 2005, pp. 33-35.

[19] IBM WebSphere MQ Everyplace. http://www-
306.ibm.com/software/integration/wmqe/ .

[20] M. Jost, J. Haussler, M. Merdes, R. Malaka, “Multimodal
interaction for pedestrians: an evaluation study”, Proc 10th
Intl. Conf. on Intelligent User Interfaces, San Diego, CA.,
2005 pp. 59-66.

[21] N. Leavitt, “Will WAP Deliver the Wireless Internet?”,
IEEE Computer, vol. 33, no. 5, May 2000, pp. 16-20.

[22] N. Medvivovic, A. Egyed and D. Rosenblum, “Round-Trip
Software Engineering Using UML: From Architecture to
Design and Back,” Proc. 2nd Workshop Object-Oriented
Reengineering (WOOR 99), ACM Press, 1999, pp. 1–8.

[23] Microsoft Visual Studio. http://msdn.microsoft.com/vstudio .
[24] D. Norman and S. Draper, User Centered System Design:

New Perspectives on Human-Computer Interaction.
Lawrence Erlbaum Associates, 1986.

[25] NTT DoCoMo http://www.nttdocomo.com .
[26] OSGi Alliance Service Platform http://www.osgi.org .
[27] H. Osher, P. Tarr, “Using Multidimesional Separation of

Concerns to (Re)shape Evolving Software”, CACM, Vol. 44,
No. 10, Oct. 2001, pp. 43 -50.

[28] M. Papazoglou, “Service-Oriented Computing: Concepts,
Characteristics and Directions”, Proc. 4th International
Conference on Web Information Systems Engineering
(WISE03), Rome, Italy, 2003, pp. 3-12.

[29] T.V. Raman, XForms, XML Powered Web Forms. Addison-
Wesley, 2004.

[30] T. Robbins, Programming Microsoft InfoPath. Charles River
Media, 2004.

[31] S. Spraragen, "The challenges in creating tools for improving
the software development lifecycle", Proc. ICSE Workshop
on Human and Social Factors of Software Engineering, St.
Louis, Missouri 2005, pp.1-3.

[32] User Agent Profile Specification, Open Mobile Alliance, 20
May 2003
http://www.openmobilealliance.org/release_program/docs/U
AProf/OMA-UAProf-V2_0-20030520-C.PDF .

http://www.borland.com/us/products/together
http://www.w3.org/TR/CCPP-struct-vocab
http://www.cvshome.org/
http://www.eclipse.org/
http://www.eclipse.org/rcp
http://www.javalobby.org/articles/ajax/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvsent/html/vsts-arch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvsent/html/vsts-arch.asp
http://www-306.ibm.com/software/integration/wmqe/
http://www-306.ibm.com/software/integration/wmqe/
http://msdn.microsoft.com/vstudio
http://www.nttdocomo.com/
http://www.osgi.org/
http://www.openmobilealliance.org/release_program/docs/UAProf/OMA-UAProf-V2_0-20030520-C.PDF
http://www.openmobilealliance.org/release_program/docs/UAProf/OMA-UAProf-V2_0-20030520-C.PDF

	INTRODUCTION
	DEVELOPMENT METHODOLOGY
	ARCHITECTURE & IMPLEMENTATION
	Overview
	Composite Layer
	Grouping and Nesting
	Code Sharing
	User Interface
	Metadata
	Launching

	Pegboard Layer
	Application Design & Implementation
	Application Patterns
	Extensibility

	USER STUDIES & FEEDBACK
	DISCUSSION & FUTURE WORK
	Platform Profiles
	Connectors & Disconnection
	Extensibility
	Code Evolution
	Collaboration
	Mobile Application Models

	RELATED WORK
	Whitehorse
	Concern Manipulation Environment
	Together
	Component-Based Systems
	Service-Oriented Architectures

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

