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ABSTRACT
Models of human mobility have broad applicability in fields such
as mobile computing, urban planning, and ecology. This paper
proposes and evaluates WHERE, a novel approach to modeling
how large populations move within different metropolitan areas.
WHERE takes as input spatial and temporal probability distribu-
tions drawn from empirical data, such as Call Detail Records (CDRs)
from a cellular telephone network, and produces synthetic CDRs
for a synthetic population. We have validated WHERE against bil-
lions of anonymous location samples for hundreds of thousands of
phones in the New York and Los Angeles metropolitan areas. We
found that WHERE offers significantly higher fidelity than other
modeling approaches. For example, daily range of travel statistics
fall within one mile of their true values, an improvement of more
than 14 times over a Weighted Random Waypoint model. Our mod-
eling techniques and synthetic CDRs can be applied to a wide range
of problems while avoiding many of the privacy concerns surround-
ing real CDRs.

Categories and Subject Descriptors
I.6.5 [Computing Methodologies]: Simulation and Modeling—
Model Development; K.4.0 [Computing Milieux]: Computers and
Society—General

General Terms
Algorithms, Measurement, Human Factors

Keywords
Human mobility patterns, Call Detail Records

1. Introduction
Human mobility models have myriad uses in mobile computing

research and other fields of study. Models that faithfully repro-
duce the movements of real people can help answer questions in
areas as varied as mobile sensing, opportunistic networking, ur-
ban planning, ecology, and epidemiology. For example, a model of
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how people move around a city can help evaluate whether a sensing
application running on mobile phones would be able to attain the
desired geographic coverage.

Our work aims to produce accurate models of how large popu-
lations move within different metropolitan areas. In pursuit of this
general aim, we have a number of more specific goals. Our first
goal is to generate sequences of locations and associated times that
capture how individuals move between important places in their
lives, such as home and work. Previous work has shown that people
spend most of their time at a few such places [13, 16, 31]. Our sec-
ond goal is to aggregate the movements of many such individuals
to reproduce human densities over time at the geographic scale of
metropolitan areas. A model that operates at these scales can help
address important societal issues such as the environmental impact
of home-to-work commutes. Our third goal is to take into account
how different metropolitan areas exhibit distinct mobility patterns
due to differences in geographic distributions of homes and jobs,
transportation infrastructures, and other factors. Previous work has
shown significant differences between cities along metrics such as
commute distances [16, 17, 18, 25].

Many human mobility models that fall short on one or more of
these goals have been proposed in the past. Some models produce
random motion that does not correspond to actual mobility patterns,
e.g., [19, 24]. Their lack of memory about recurring movement
patterns and of spatiotemporal realism about population densities
results in unrealistic motion of modeled individuals. Some models
are tailored to a small geographic area such as a university campus,
e.g., [20]. They do not apply to larger geographic areas with more
diverse populations. Some models aim to be universal, e.g., [13],
and thus do not adapt to different geographic areas. There remains
a need for a realistic model that matches empirical observations for
large and distinct geographic areas.

This paper introduces a modeling approach that takes as input
certain spatial and temporal probability distributions drawn from
large populations of real people living across wide geographic ar-
eas. An especially good source of these distributions are the Call
Detail Records (CDRs) maintained by cellular network operators.
Billions of cellphone users worldwide keep their phones near them
most of the time, and the networks need to know the rough location
of all active phones to provide them with voice and data services.
CDRs contain information such as the time a voice call was placed
or a text message was received, as well as the identity of the cell
tower with which the phone was associated at that time. When
joined with information about the locations of those towers, CDRs
can serve as sporadic samples of the approximate locations of the
phone’s owner. A growing body of work has shown that informa-
tion derived from anonymized CDRs can accurately characterize
many aspects of human mobility [3, 11, 13, 16, 17, 18, 31].



With cellular network data becoming more available, it is tempt-
ing to think that creating human mobility models from such data
should be easy. This is, however, still not the case. For example,
while CDRs readily yield insights into aggregate population den-
sities, they do not convey whether their associated locations corre-
spond to home, work, or other important places for particular cell-
phone users. Without such semantic information, it is difficult to
abstract CDRs into models applicable to scenarios, regions, or pop-
ulations that vary from those for which the real-life CDR data was
collected. Furthermore, both the spatial and temporal granularity
of CDR data is quite coarse. Spatially, CDRs are only accurate to
the granularity of celltower spacings. Temporally, CDRs are only
generated when phones are actively involved in a voice call or text
message. Our work makes key contributions in overcoming the
challenges stemming from lack of semantic information and coarse
granularity, in order to produce usefully accurate models for arbi-
trary metropolitan regions.

Our modeling approach intelligently samples the spatial and tem-
poral probability distributions from CDRs, or other population data,
to generate sequences of locations and times for any number of syn-
thetic people in any region for which the required distributions can
be obtained. A generative model derived from CDRs has flexibility,
compactness, and availability advantages over using CDRs directly.
First, our models offer the option of perturbing the input distribu-
tions to evaluate what-if scenarios, for example to consider how
the addition of a new residential or employment area might change
traffic patterns. In contrast, the original CDRs are difficult to ma-
nipulate in meaningful ways. Second, our model for a metropolitan
area with a 50-mile radius can be stored as a set of histograms that
fit within 2 gigabytes. In contrast, an anonymized CDR dataset
for the same area occupied approximately 100 gigabytes. Finally,
our models can be made available to a larger research community
because they do not to reproduce the mobility pattern of any indi-
vidual real person. They thus avoid many of the privacy concerns
associated with source CDRs.

The final stage of our modeling approach produces locations
and times in the form of synthetic CDRs. These synthetic CDRs
have the same format and call/text frequency characteristics of real
CDRs. They are modeled to approximate the actual movement pat-
terns of users. Increased model complexity results in more accu-
rate movement patterns, which in turn produces higher-fidelity syn-
thetic CDRs. We chose the CDR output format for several prag-
matic reasons. One, we can compare this output directly against
real CDRs, our best source of location information for large popu-
lations and regions. Two, this output can plug in directly into the
growing body of analysis software that uses CDRs as input.

In this paper, we propose and evaluate WHERE (“Work and
Home Extracted REgions”), a region-scale modeling approach. First,
we identify the key properties of human movement, such as impor-
tant locations and commute distances, that need to be represented
as probability distributions. Then, we describe how these proba-
bility distributions can be used to generate synthetic CDRs for an
arbitrary number of synthetic people.

We validate our approach by comparing the spatiotemporal dy-
namics of synthetic populations generated by WHERE to those of
real populations. In particular, we compare the spatial population
densities on an hourly basis for synthetic and real CDR sequences.
Our validation begins with stylized examples that confirm our mod-
els’ fidelity both quantitatively and visually. We validate both at the
aggregate level, where simpler models may perform well, as well
as at a finer granularity, which exposes the advantages of WHERE
compared to other models considered. We then scale up our valida-
tion to large datasets containing real anonymized CDRs for the Los

Angeles (LA) and New York City (NY) metropolitan areas. Our LA
and NY datasets each span three months of activity for hundreds of
thousands of phones, yielding billions of location samples.

Recognizing that real CDRs are not available to all researchers,
we also evaluate models in which the same input distributions are
derived from publicly available US Census data [32]. We show
that models based on real CDRs closely approximate the real pop-
ulations and movements of these cities. Models based on census
data are also viable, but at a loss of significant accuracy.

Finally, we present example applications of our modeling ap-
proach. We create models for the LA and NY metropolitan areas
and use the resulting synthetic CDRs to perform calculations that
one may wish to perform on real CDRs. We show that calculations
performed on the WHERE model produce far more accurate results
than those performed on more naive models. For example, we can
calculate daily ranges of travel that agree with real ranges, as well
as perform more complex tasks such as investigating opportunistic
message propagation in large urban environments.

The overall contributions of our work are:

• We introduce an approach to modeling human mobility pat-
terns by generating fully synthetic CDRs from real-world
probability distributions.

• Our approach works at the scale of large metropolitan areas
and accounts for mobility differences between metropolitan
areas.

• We show that our technique is extensible to greater levels
of precision by providing it more complete input probability
distributions (at the cost of increased model complexity).

• We validate our approach against large-scale location datasets
drawn from two major US metropolitan areas. We compare
our generated CDRs against real CDRs, and show that our
location distributions achieve more than 4 times error reduc-
tion compared to a Random Waypoint model.

• As an example of how our models can help answer concrete
questions about human mobility, we use our synthetic CDRs
to compute daily ranges of travel. Our synthetic CDRs ex-
hibit error at the median of less than 0.8 and 1 mile for NY
and LA residents, respectively. This accuracy constitutes
more than a 14 times improvement over that of a Weighted
Random Waypoint model.

The rest of this paper is organized as follows. Section 2 presents
the probability distributions needed to create our models. Sec-
tion 3 explains the construction of synthetic CDRs. Section 4 de-
scribes our evaluation methodology. Section 5 validates our syn-
thetic CDRs against stylized examples and Section 6 validates them
against large datasets of real CDRs. Section 7 examines example
uses of artificial CDRs. Finally, Section 8 discusses open issues
and future directions, and Section 9 surveys related work.

2. Spatial and Temporal Parameters

for Mobility Modeling
Modeling human mobility requires both spatial and temporal in-

formation about the places and times that humans move. Human
mobility is tightly coupled to the geography of the city people live
in [16, 17, 18, 25]. Therefore, any accurate mobility model should
take into account both the area geography and individual user mo-
bility patterns. In this section, we describe the probability distribu-
tions that serve as inputs to the WHERE method.

Figure 1 summarizes the overall flow of our approach, including
key inputs and data structures. For each of the input distributions
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Figure 1: Overall view of the WHERE modeling approach. Five input probability distributions are important for our modeling technique, but their

source can vary.

Data Sources
Distribution All Public Hybrid All CDR

Home Census Census CDR

CommuteDistance Census Census CDR

Work Census Census CDR

Hourly Census Home
and Work
data split by
time of day

CDR CDR

CallTime and
PerUserCallsPerDay

Previously-
published
work [1, 5]

CDR CDR

Table 1: For the five probability distributions used in our approach,

the input data for these probabilities can be gathered from different

sources. We have explored methods based entirely on public data, as

well as methods using data from proprietary anonymized CDRs.

required, Table 1 summarizes different methods for generating the
distributions. The subsections below describe the distributions in
more detail, and discuss the different possible sources for the input
data required.

2.1 Spatial Information: Important Locations
Capturing where people spend time is important for creating ac-

curate human mobility models. Prior work has demonstrated that
the majority of people’s movement occurs between a small number
of locations. A full 60% of mobility can be accounted for with just
the top two cellphone towers with which a user is associated [31].
Therefore, in modeling mobility, good accuracy can be expected
if we have probability distributions for the few locations in which
users spend the majority of their time.

For most people, the two most important locations are “home”
and “work.” A design decision for the model is how to gather input
information and how to express the probabilities of different home
and work locations. If one simply pulled locations independently
from two separate home and work distributions, the accuracy of the
resulting model would be quite poor, since such an approach would
ignore the strong correlation between where someone works and
where they choose to live. We also explored methods that assumed
commute distances independent of home location, but these were
also too inaccurate to be useful.

Home

d

Work

Figure 2: Selecting a user’s home and work locations. Pick a home

location, then select d from the distribution of commute distances at

that home location. The work location is selected from a probability

distribution for work locations on the resulting circle of radius d.

As shown in Figure 2, we use a different approach that estimates
spatial home-work densities by relying on three distributions. First,
we pull home locations randomly from a probability distribution
across latitude and longitude expressing the likelihoods of where
people live, i.e. Home. For each point in space, a second probabil-
ity distribution CommuteDistance expresses the probability of hav-
ing different commute distances, conditioned on that given home
location. A commute distance, d, selected from this distribution can
be envisioned as describing a circle of radius d around the selected
home location. Next, our method selects a work location some-
where along this circle. To do so, a third distribution, Work, gives
the probability of different work locations around a circle of com-
mute distance d from the home location. These Home and Work lo-
cations are derived from population densities that correspond to the
city we wish to synthesize. Such distributions could be computed
from either real CDRs or the census data, which contains informa-
tion about the number of people living or working in a particular
area. We will discuss possible sources of each spatial distribution
more thoroughly in a subsequent section.

2.2 Spatiotemporal Information: Hourly Pop-

ulation Densities
The distributions for Home, Work, and CommuteDistance give

information about spatial probabilities, but do not link them to par-
ticular times of day. To improve the fidelity of our model, we need
to include temporal information as well. For instance, a heavily



(a) Los Angeles (b) New York

Figure 3: Logscale heatmaps of call densities in the LA and NY areas from 7 to 8 p.m. on weekdays over a 3-month period. (The apparent activity

in offshore areas is only a byproduct of interpolation techniques used to produce these maps.)

residential area is likely to be more populated at night while a com-
mercial district is likely to be more populated during the day.

We model the time-varying aspects of human mobility through
the use of spatial population densities indexed by time t. Unlike the
previous spatial distributions, which have specific meanings like
home and work, this portion of our model is an aggregate distribu-
tion that simply reflects the probability of people being at a partic-
ular location at a particular time. For some it could be work, for
others home, and for others neither.

Hourly population density distributions can be constructed in
several ways. First, if available, CDR traces can be analyzed to es-
timate population at any point in space and time. This requires the
assumption that the spatial densities of telephone calls is approxi-
mately equivalent to the spatial density of people. Prior work [17]
has shown that cellular calls are an accurate representation of the
locations of a user. In collections of actual CDRs, call locations
are estimated as the location of the cell tower through which the
call originated. Since cell towers vary in density (urban vs. rural)
we interpolate the cell tower locations and call counts to a regular
grid whose granularity is specified by the modeler. The hourly call
counts per latitude-longitude grid area can be normalized to form
a distribution across latitude and longitude called Hourly. Figure 3
shows instances of one-hour population density estimates made in
this way for calling activity in the LA and NY regions.

If CDR data are not available, one could approximate the pop-
ulation densities from census data. For example, one could form
an overall distribution by using census home location data to esti-
mate population data during traditional non-work hours (e.g., 7pm
to 7am) and census work location data to estimate population den-
sity during traditional work hours (e.g., 7am to 7pm). We evaluate
this alternative in subsequent sections.

2.3 Temporal Information: Calling Patterns
The end goal of our modeling work is to create synthetic CDR

traces that can be validated against real-world CDRs and that can be
used in the same ways that previous research has used real-world
CDRs. Thus, a final step in our model is to combine the spatial
probabilities above with information about calling patterns, so that
our model produces accurate synthetic CDRs for comparison and
future use.

To incorporate realistic temporal information into the mobility
model, we require realistic information about the distributions of
user call rates. One can envision a user’s daily call volume charac-
teristics as being probabilistically chosen from a distribution of Pe-

rUserCallsPerDay indexed by different possible averages and stan-
dard deviation values.

Once a user’s average and standard deviation of calls per day
has been selected, the next question concerns the more detailed
temporal patterns of when those calls are made. To this end, we
separate users into similarity classes with separate temporal distri-
bution functions for each similarity class. This method requires a
detailed source of temporal input data, such as a real-world CDR
trace. From this, we examine how many calls each user makes
during each hour of the day, and this calling behavior gives us a
24-dimensional vector (i.e., one dimension for each hour). We nor-
malize this vector so that it represents probabilities rather than call
volumes, and then this normalized 24-dimensional vector is used
to generate similarity scores between each pair of users. From this,
we use a common clustering algorithm (X-means [27]) to cluster
users. Given the option of one to 20 clusters of users, X-means
determined 2 clusters of users to be the best choice for our data. Fi-
nally, we return to the CDR trace and record per-minute call prob-
ability distributions separately for each user class. From these we
form a probability distribution CallTime for each UserClass and for
each hour of the day. An example of empirically-collected call time
probabilities is shown in Figure 4. While typical diurnal patterns
are seen for both classes of users, one class clearly favors evening
calls while the other favors afternoon calls.

Without access to CDR information, it is still possible to con-
struct call distributions. One approach would be to assume that
all users have similar temporal patterns, and simply use an overall
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mined by X-means clustering.

Algorithm 1 Create

Ensure: pop[] is an N sized array of 4-element structures to be
filled in with 4 properties for each of N synthetic users

1: for user = 0→ N do

2: pop[user].home← location from Home

3: commute ← distance from CommuteDistance conditioned
on pop[user].home

4: pop[user].work ← location from Work at distance
commute from pop[user].home

5: pop[user].callsbehavior ← user type from CallTime

6: pop[user].callsperday← µ and σ from PerUserCallsPer-

Day and independent of pop[user].callsbehavior

7: end for

per-hour call probability distribution function as the guide for when
calls are most or least likely to be made. Such probabilities can be
drawn from prior work including [1, 5]. Our work validates the
accuracy of approaches like these against real-world CDR collec-
tions.

To summarize, the sources of temporal input data on call pat-
terns can either be published statistics [1, 5] or proprietary CDR
data. Because these call patterns have been seen multiple times in
multiple contexts, we assume that such a calling pattern is general
enough to hold regardless of the spatial data to which it is applied.

3. Algorithms for Model Generation
The previous section argued for the importance of particular spa-

tial and temporal information as inputs towards a stochastic mobil-
ity model. In this section we describe how to use such information
as inputs for mobility models with different degrees of complexity
and accuracy. We start in Section 3.1 with a two-place model that
has synthetic people who alternate between home and work. We
call this model WHERE2. Despite the simplicity of this model, the
attention to spatial and temporal distributions gives it considerable
accuracy. Section 3.2 shows how the technique can be expanded
into a three-place model we call WHERE3, with even more accu-
rate results.

3.1 Two-Place Model: Work and Home
WHERE2 makes use of the fact that most people spend the ma-

jority of their time either at home or at work. The process of gen-
erating a synthetic CDR trace embodying this model occurs in two
stages. In the first stage, a synthetic user is created according to
Algorithm 1, Create. First, a user is assigned a home from Home.
Second, a commute distance is selected for the synthetic user. As
illustrated in Figure 2, CommuteDistance is conditioned on a user’s

Algorithm 2 Move

1: for user = 0→ N do

2: for day = 0→ D do

3: callstoday ← normal random number with µ and σ from
pop[user].callsperday distribution

4: for call = 0→ callstoday do

5: calltime← time from pop[user].callsbehavior

6: location ← location using probabilities of
pop[user].work and pop[user].home at time
calltime from the Hourly

7: print user, day, calltime, location

8: end for

9: end for

10: end for

particular home location. In this way, we begin to tie users specif-
ically to the geography of the area to be synthesized. It is not suf-
ficient to select from a general probability distribution for com-
mute distances, because this may unfairly bias toward commute
distances for very dense areas. Intuitively, the likely commute dis-
tances for a person living in midtown Manhattan are quite different
from those who live in outlying exurbs. Third, all possible locations
that are the selected distance away from the chosen home location
are considered as possible “work” locations, and a work location is
chosen for the synthetic user. Possible work locations are weighted
with probabilities given by Work, and again are conditioned on a
particular home location and commute distance.

Finally, after having selected a user’s home and work, the syn-
thetic user is assigned a calling pattern (i.e., mean µ and standard
deviation σ calls per day) according to the distributions from Call-

Time and PerUserCallsPerDay.
In the second stage, our synthetic users are moved between “home”

and “work” according to Algorithm 2, Move. Movement “occurs”
based on synthetic CDRs representing calls made at different loca-
tions at different times. For each day, a number of calls to make is
selected from the user’s average (µ) and standard deviation (σ) of
the number of calls made per day. Each call is then made according
to the calling distribution of the user’s class, as given in CallTime.
When a “call” is made, the location of the call is determined to be
either home or work according to the probability of a person being
in the location at that time of day (i.e., the probability is determined
according to the distributions in Hourly).

3.2 Extension to Additional Places
This section discusses how WHERE2 can be augmented for greater

realism by increasing the number of important locations that are
considered for each synthetic user. The tradeoff of model complex-
ity against the fidelity of the synthetic trace can be tuned to suit the
model’s purpose.

We can extend WHERE using Algorithm 3, CreateExpand, to
create WHERE3. When the synthetic user is given locations, a
third location is selected such that the distance of the additional lo-
cation is selected from a distribution of distances from the “home”
and “work” locations of users in the real city, the AverageDistance

Distribution. Clearly, this must be conditioned on the commute dis-
tance because distances between the three locations (home, work,
and the one to be added) are conditionally dependent on each other
(i.e., they form three sides of a triangle). Probabilities for the addi-
tional locations can be drawn from a probability distribution of the
user locations over time, the AllLocations Distribution. Similarly,
we can create WHERE4, WHERE5, etc. by incrementally adding
locations to the previous model that are conditionally dependent on



Algorithm 3 CreateExpand

Ensure: pop[] is an N sized array of 5-element structures to be
filled in with the 4 properties from Create and 1 additional
property for each of N users

1: for user = 0→ N do

2: Perform Create for user
3: disttothirdloc ← distance of third cluster to

pop[user].home and pop[user].work from AverageDis-

tance

4: pop[user].third ← location from AllLocations at
distance disttothirdloc from pop[user].home and
pop[user].work

5: end for

the locations before them. Such models will be increasingly pre-
cise but come at the expense of making the models increasingly
complex.

In addition, when the synthetic CDRs are created, probabilities
for a user “moving” to a given location must be modeled realisti-
cally. In our approach, they are conditioned on the location of the
home cluster. This needs to be done so that home and work re-
main the most frequently visited locations instead of a generically
more popular third location. This way, additional locations will be
visited in a way that mimics the way those locations are visited
by real people. This requires modification of the hourly proba-
bility distribution described in Section 2.2, a step not reflected in
the CreateExpand algorithm. Specifically, we need a set of hourly
probabilities for each possible home location. By conditioning the
probabilities for Section 2.2 by the location of the synthetic user’s
home, we greatly increase the size of the required set of input prob-
ability distributions, but we are able to add realism to human move-
ment patterns. Once the probabilities are modified, no modification
needs to be done to the Move algorithm except that when selecting
from the hourly probability distribution, the home location must be
taken into consideration as well.

4. Evaluation Methodology
This section offers methodology and background information re-

garding our experimental evaluations. In particular, we discuss
the metrics by which we gauge model accuracy, the other mobil-
ity models we compare against, and potential sources for the input
data our model requires.

4.1 Earth Mover’s Distance
Ultimately, the synthetic CDRs are intended to create movement

patterns that mimic those seen in the real CDRs. Thus, in aggre-
gate, a “good” synthetic trace has the synthetic user population
distributed in a very similar way in space as the real trace, at any
point during the day. To quantitatively assess the similarity or dis-
similarity of two population density patterns at a given time, we
need a measure for comparing two spatial probability distributions
(i.e., the hourly locations of real and synthetic users). To this end,
we rely on the Earth Mover’s Distance (EMD) as our measure of
choice [29, 30]. To calculate it efficiently, we use the Fast EMD
code from [26].

EMD attempts to find the minimum amount of energy required
to transform one probability distribution into another. If one vi-
sualizes a probability distribution as a hill of earth to be reshaped
into the second probability distribution, this energy is given by the
“amount” of probability to be moved and the “distance” to move
it. Since different distance weightings lead to different EMD val-

Miles EMD

1 8.67e+05

10 8.65e+06

20 1.74e+07

30 2.61e+07

40 3.48e+07

50 4.35e+07

Table 2: EMD values for linear shifts of the probability distribution.

ues, we provide Table 2 as a basic calibration for the meaning of
EMD values in this work. Table 2 provides EMD calibration data
for a location shift transform. The starting point is a probability
distribution in which all of the probability is concentrated in a sin-
gle location (e.g., delta function). The “Location Shift” transform
maintains the concentrated probability spike, but shifts it linearly
by the specified number of miles to a new geographic location.

Table 2 confirms that in the case of a simple location shift, the
EMD changes linearly with the shift amount or distance. In par-
ticular, an error caused by a simple shift of 1 mile corresponds to
an EMD of 8.67e+05, and larger shifts scale proportionately. For
the remainder of this paper we normalize our EMD errors by this
factor. This allows us to refer to them in terms of the more human
readable “miles of error". To determine the average error between
real and synthetic location density patterns, we generate location
probability distributions for each hour of the day from our syn-
thetic CDRs. Then we calculate the EMD between our synthetic
distributiond and the reference probability distribution (one of the
distributions from Section 4.2). To convert to miles of error, we
simply divide the result by 8.67e+05.

Another benefit that comes with using EMD in this context is that
since we deal with probability distributions and physical distances,
EMD is a metric in the strict mathematical sense [2]. The ensuing
properties regarding relative distances (e.g. triangle inequality) are
useful when comparing the fidelity of different models or use cases.

4.2 Comparison Models
To demonstrate the value of our approach, we compare our syn-

thetic models against two commonly-used mobility models: Ran-
dom Waypoint [19] and Weighted Random Waypoint.

Random Waypoint: In the Random Waypoint (RWP) model,
each user selects a random destination from all possible destina-
tions in the area to be simulated [19]. Once a destination is se-
lected, the user moves at a random velocity toward the destination.
When the selected destination is reached, the user waits for a ran-
dom amount of time and then selects a new destination and new
velocity to begin the procedure anew. While known to be sim-
plistic, RWP has nonetheless been used extensively by the mobile
computing research community, because so few alternatives exist.

Weighted Random Waypoint: The Weighted Random Way-
point (WRWP) model behaves similarly to RWP in that a user
moves at a random velocity towards a chosen waypoint and waits
for a random amount of time. However, in this variant, the destina-
tions are not chosen from a uniform distribution. Instead, a location
probability distribution is used to weight possible waypoints. The
distribution we use is obtained by combining all of the hourly prob-
abilities from Section 2.2 into a distribution that gives the popular-
ity of the location for making calls over the whole day. This results
in waypoints being preferentially chosen based on their popularity
throughout the day. Intuitively, this accounts for the importance
of home and work locations, so it is interesting to note how our
approach further improves on this.



(a) Los Angeles (b) New York

Figure 5: ZIP codes in the LA and NY metropolitan areas used in our study. Note that NY and LA areas are drawn to the same scale.

LA NY

Total Unique Phones 318K 267K

Total Unique CDRs 1395M 1095M

Median CDRs/phone/day 18 18

Median calls/phone/day 6 7

Median texts/phone/day 6 5

Table 3: Characteristics of the CDR datasets for the LA and NY

metropolitan areas. Each dataset spans 91 consecutive days from April

1 to June 30, 2011.

For either of the RWP and WRWP models, we generate syn-
thetic agents that move on a grid and at random points in time, an-
nounce their location. In this way, the baseline models exhibit the
same non-continuous behavior as the real CDRs. Once the baseline
movement trace is generated, we calculate the EMD of a simulated
hour of the baseline model against the reference CDRs.

4.3 Sources for Input Probability Distributions
As noted in Section 2, the probability distributions that form the

input to WHERE can be obtained from a range of sources. We
describe our sources here.

4.3.1 Real Call Detail Records

Call Detail Records maintained by cellular network operators
provide up-to-date and low-cost information about human locations
on a large scale. We have access to anonymized CDRs from a major
US carrier, from which we extract the necessary spatial and tempo-
ral probability distributions.

Dataset Contents: We gathered location information for a ran-
dom set of cellular phones whose billing addresses lie within the
metropolitan regions of interest. First, we identified all ZIP codes
within a 50-mile radius of the Los Angeles and New York city cen-
ters. These ZIP codes correspond to the darker colored regions in
Figure 5. Second, we obtained anonymized and simplified CDRs
for a random sample of phones registered to individuals with billing
addresses in those ZIP codes. These CDRs contain the following
information: a unique phone identifier in place of the telephone
number, the starting time of the voice or text event, the duration of
the event, and the locations of the starting and ending cell towers
associated with the event. We excluded phones registered to busi-
nesses because their billing ZIP codes do not generally correspond
to people’s homes. We also excluded phones that appeared in their
billing ZIP codes fewer than half the days they had voice or text
activity, so as to exclude people who do not live in those ZIP codes.

Table 3 describes our CDR datasets for LA and NY. Each dataset
contains more than a billion location samples for hundreds of thou-
sands of phones over 3 months of activity, with 18 median location
samples per day for each phone.

Data Validation: In previous work, we have verified that CDR
datasets gathered using this same methodology accurately represent
the mobility patterns of the population at large. More specifically,
we have performed a number of comparisons against data from the
US Census [32] and against ground truth provided by volunteers.
One, we have confirmed that the number of sampled phones in each
ZIP code is proportional to the population of that ZIP code [18].
Two, we have shown that the maximum pairwise distance between
any two cell towers contacted by a phone in one day is a close ap-
proximation for how far the phone’s owner traveled that day [17].
Three, we have shown that applying certain clustering and regres-
sion techniques produces accurate estimates of important locations
in people’s lives, in particular home and work [16].

Privacy Measures: Given the sensitivity of location informa-
tion, we took several steps to preserve the privacy of individuals
represented in our datasets. First, only anonymous records were
used in this study. Personally identifying characteristics were re-
moved by someone not involved in the data analysis. Second, we
worked only with large collections of phones. We did not focus our
analysis on any individual phone and we present only aggregate
results.

In addition to these active steps, it is in the nature of CDRs to
yield only temporally sparse and spatially coarse location informa-
tion. A CDR is generated only when a phone is used for a call or
text message—at all other times the phone is invisible to us. Fur-
thermore, we only know phone locations to the granularity of a cell
tower. Because a tower often covers an area greater than one square
mile, our spatial resolution is limited.

4.3.2 Census Data

Clearly, not all researchers will have access to real CDRs. How-
ever, in the US and other countries, there is publicly available data
regarding home and work locations, as well as commute distances,
for large populations. To demonstrate the efficacy of using publicly
available data, we used census information for the same regions de-
fined in Section 4.3.1 to construct probability distributions for the
locations of home and work.

Although the census can be used to determine densities of home
and work locations, it provides little or no information about the
hourly probabilities of a given location. Therefore, when we use
WHERE on All Public data, we must make an assumption about the
hourly distributions. To that end, we assume that the Work distri-



(a) Two Locations Ideal (b) RWP (c) WRWP (d) WHERE2

Figure 6: Heatmaps comparing the probability distributions of three models of mobility against the “Two Locations” test case during the “home”

and “work” phase of the test case for 10,000 synthesized users. Hot (red/light) locations have more calls made at that time, while cold (blue/dark)

locations have fewer.

bution doubles as the hourly distribution of all hours between 7am
and 7pm on Weekdays and that the Home distribution provides the
hourly distribution at all other times.

We also consider a Hybrid scheme in which we use a combina-
tion of public data and CDRs. In this scheme, home, work, and
commute distances come from the census, but the other distribu-
tions are drawn from CDR data.

4.4 Artificial Test Cases
It is useful to construct some stylized examples to demonstrate

the function of specific features of WHERE. By creating artificial
test cases, we are better able to reason about the expected behav-
ior of the model and its strengths and weaknesses. In this section,
we explain how we construct three artificial reference probability
distributions that exercise various features of WHERE.

Two Locations: Initially, we must determine that WHERE func-
tions correctly. The model must be able to place synthetic users at
home and work locations and move them according to time of day.
Further, since we emulate CDRs with discrete call locations, the
synthetic users must only exist at these locations.

We test these features with the “Two Locations” test case. The
entire world is populated by users that move predictably between
two locations at highly regimented intervals. From 7am to 7pm on
weekdays, all of the probability is concentrated in a single “work”
location. At all other times, the probability is clustered in a second
“home” location.

Two Distinct Types: We then expand the test cases to include
multiple possible home and work locations. WHERE must be able
to correctly condition commute distances on home locations. If
multiple possible works exist for a home, the model must select a
realistic one.

We demonstrate this with the “Distinct Types” test case. The
home distribution has half the probability at one location and half
at a second location. The work distribution is also split between
two locations. The commute distributions are constructed such that
each home location uniquely identifies a work location.

5. Validation: Stylized Examples
In this section we evaluate the accuracy of WHERE2 in synthe-

sizing roughly 10,000 people using input probability distributions
for the stylized test cases described in Section 4.4. We compare,
both graphically and quantitatively, errors in the WHERE2, RWP,
and WRWP models relative to an ideal result for each stylized case.

5.1 Two Locations Test Case
Figure 6 illustrates the spatial density patterns of user locations

created by the “Two Locations” test case. Figure 6(a) shows the
ideal result, in which probability is a spike at the home location at
6am, and a spike at the work location at 9am. RWP (Figure 6(b))
clearly differs greatly, because it is given so little input informa-
tion regarding spatial or temporal patterns to model. The WRWP
model better concentrates probability near the home and work lo-
cations, but does not have sufficient temporal input to distinguish
how 9am mobility probabilities should differ from the 6am ones.
Finally, Figure 6(d) shows the heat maps for WHERE2, which are
a strong visual match to the ideal case. Even though WHERE2 has
no hardwired information about what “work hours" are, it is able
to correctly model the call distribution information both during the
“home” and “work” phases. In contrast, while the WRWP model
is able to correctly move users from “home” to “work”, the lack of
timing information damages its functionality for generating realis-
tic synthetic CDRs.

While Figure 6 allows for an easy visual differentiation between
the different models, the EMD measure is better for quantifying the
observed differences. In fact, the EMD for WHERE2 corresponds
to a simple shift of the cumulative probability of less than 0.5 miles.
This is a 10X improvement over WRWP, the next best model con-
sidered. The WHERE2 model correctly generates calls from the
desired discrete locations, and among the considered models, it is
the only one to recognize that not all locations are equally probable
at all times. Because each user only has two locations, WHERE3
performs exactly like WHERE2.



(a) Two Distinct Types Ideal (b) WRWP (c) WHERE2

Figure 7: Heatmaps comparing the WRWP model to WHERE2 for 10,000 synthesized users. The WRWP is unable to account for the two distinct

patterns and thus sends synthetic users on paths never taken in the “real” trace.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  5  10  15  20

E
rr

o
r 

(m
ile

s
)

Hour

RWP
WRWP

WHERE2
WHERE3

Figure 8: EMD error over time for different models of human move-

ment in the NY area. Our expanded model shows average errors

smaller than 3 miles. WHERE fits between WHERE3 and WRWP.

5.2 Two Distinct Types Test Case
Figure 7 shows the heatmaps of the “Two Distinct Types’ ideal

distribution, as well as WRWP and WHERE2. WHERE2 detects
that users make calls only from one of two locations and thus cor-
rectly positions users. In contrast, the weighted model has a sin-
gle user travel to each of the four possible locations, resulting in
a significantly worse EMD. When comparing against the WRWP
model, WHERE2 has an average of 5% improvement across all
hours of the day. Because each user type only has two locations,
WHERE3 again performs exactly like WHERE2.

6. Validation: Large-Scale Real Data
In this section, we evaluate the accuracy of WHERE in synthe-

sizing more than 10,000 people using probability distributions from
the datasets of real CDRs described in Section 4.3.1, and from the
census data described in Section 4.3.2. We compare, both graphi-
cally and quantitatively, errors produced by the WHERE, RWP, and
WRWP models relative to those two large-scale real-data sources.

6.1 Modeling Based on Real CDRs
Figure 8 shows EMD errors for the different possible models

using distributions drawn from real CDRs. By including popula-
tion density information, WRWP improves over original RWP by
4 times. WHERE, however, outperforms this WRWP model by an
additional 20%. Furthermore, WHERE3 improves further still; it
is able to recreate the NY probability with an accuracy of about 3
miles. WHERE and WHERE3, therefore, provide a powerful tool
for obtaining accurate large-scale motion patterns that result from
individual user movements.

Finally, Figure 9 gives an overall visual demonstration of WHERE’s
effectiveness. When this heatmap is compared to Figure 3(b), the
two distributions are found to be visually very similar. The low
EMD error combined with the visual confirmation of similarity

Figure 9: Logscale heatmap of the output of WHERE for the NY area.
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Figure 10: EMD error using different levels of available data. Even

with fully public data, errors remain at an average of 8 miles.

shows that WHERE is an effective approach to modeling human
mobility in a city.

6.2 Modeling Based on Census Data
Although the most accurate synthetic CDRs are derived from real

CDRs, other data sources can be used at some loss in accuracy.
For example, Figure 10 shows that using all-public data from the
US Census, we are able to recreate location distributions in NY
with an average error of 8 miles. Using a hybrid of census data
with some CDR information regarding the call densities at different
times of the day (not publicly available, but easily aggregated and
thus potentially easier to obtain) reduces this error to an average
of 6.8 miles. In contrast, using all-CDR information reduces the
average error to some 3 miles in WHERE3, as shown earlier.

Although 8 miles of error seems large compared to the 3 miles
of error possible with WHERE3, this error is aggregated across all
users. Individually, user behavior remains qualitatively correct and
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relative differences remain correct. Thus, though one could not rely
on fully public data for an application such as placement of cellular
towers, there remain many uses at such error levels. Notable exam-
ples include determining commute distances or experimenting with
hypothetical population shifts (see Section 7.1 and Section 7.3),
both of which depend on relative user behavior.

7. Example Uses
Creating synthetic CDRs has a wide range of implications for

the scientific community. The inability to access real CDRs has
frustrated many researchers. In generating artificial, yet realistic
CDRs, we enable the greater community to perform a wide range
of experiments, with an assurance that the results mimic those that
would have been obtained with real CDRs.

This section presents three scenarios that highlight the value of
our mobility models based on synthetic CDRs. We first present two
usage experiments that we performed on synthetic CDR traces as
well as on real CDRs. In Section 7.1 we replicate the daily range
calculations reported in [18], which defined daily range as the max-
imum distance a person travels in one day. This comparison serves
as an important, independent validation of WHERE because no
daily range statistics were included in the input to our models. By
performing well on the daily range metric, WHERE demonstrates
an ability to model large-scale movement patterns while retaining
realistic individual behavior. Second, in Section 7.2, we perform
a simple message flooding experiment relevant in the context of
opportunistic networking. Our third example highlights the major
benefit of synthetic CDR traces in their ability to predict and visual-
ize the impact of hypothetical changes to regional mobility patterns.
Such changes might result, for example, from new employers mov-
ing into the region or new residential areas being developed. With
this in mind, Section 7.3 presents an example of using WHERE to
generate synthetic CDRs for a what-if scenario regarding mobility
in the New York region.

The scenarios presented in this section constitute a set of exam-
ple applications that demonstrate the broad utility of our models.
These examples are far from exhaustive, but are important as illus-
trations of a wide range of possible uses.

7.1 Daily Range
Daily range, or the “diameter of a convex hull,” has been shown

to be a useful tool for characterizing human mobility patterns [18,
20]. We can therefore demonstrate the value of our modeling tech-
niques by showing that synthetic CDRs they generate can be used
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to replicate daily range experiments and match the results obtained
with real CDRs.

Additionally, daily range serves as an important metric for veri-
fying correctness of the generated models. The EMD metric mea-
sures the aggregate behavior of the users, but daily range displays
the results at a per-user granularity. Correctness at a metropolitan
scale may or may not be correlated with correctness at the scale of
individual users. The daily range metric tests whether individuals
are modeled realistically.

We summarize our results with the help of boxplots in Figure 11.
The boxplots depict five-number summaries of the complete empir-
ical distributions of interest. The “box” represents the 25th, 50th,
and 75th percentiles, while the “whiskers” indicate the 2nd and
98th percentiles. The horizontal axes show miles on a logarithmic
scale. Nearly any difference between the medians is statistically
significant due to the large sample sizes.

Figure 11 shows the daily range results for synthetic CDRs pro-
duced by WHERE2 and WHERE3, as well as those produced by
RWP and WRWP. It is clear that the behavior of the random way-
point models differs greatly from reality. For example, WRWP ex-
hibits qualitatively wrong results and errors greater than 300%. In
contrast, WHERE2 is qualitatively correct, and its median daily
range value is within 0.8 miles of the true value. WHERE3 closes
this error further: 0.7 miles error at the median.

In other words, this daily range example shows that WHERE2
and WHERE3 capture aspects of mobility that are not captured by
the random waypoint models. By exposing differences at the grain
of individual synthetic users in this way, WHERE2 results in more
than a 14X improvement over WRWP. This advantage was not vis-
ible under the more aggregate metric of EMD, when WHERE ap-
peared to hold only a small advantage over WRWP.

This example also demonstrates another attractive feature of our
model. Because much of human mobility is between two ma-
jor points of interest, adding a third point to our model provides
very little obvious benefit for experiments of this nature. A re-
searcher interested in problems such as daily range can choose to
use the simpler WHERE2 model, avoiding the effort of computing
the more complex WHERE3 model with little or no loss of accu-
racy.

Comparing NY and LA: Though much of the evaluation thus
far has focused on New York City, the technique is more broadly
applicable. Figure 12 compares daily range statistics for both NY
and LA, for both real CDR data as well as WHERE. As before
WHERE generates very high-accuracy results for these statistical



Real WHERE2 WHERE3

Delivery Percentage 98% 53% 83%

Median Message Delay 17 hours 74 hours 18 hours

Table 4: Message passing properties for opportunistic flooding.

For such a scenario an expanded model of human movement

gives better results.

distributions. At the median value, WHERE computes daily range
for the LA area with only 1 mile of error. Low errors are seen
at the other percentiles as well. This demonstrates WHERE’s ap-
plicability across cities with very different mobility patterns and
geographic characteristics.

7.2 Message Propagation
Another use for CDRs is the investigation of human mobility for

social contacts, epidemiology, and data carrying. For instance, in a
delay-tolerant networking scenario [8], what sorts of routing algo-
rithms work best? In this section we demonstrate that our artificial
CDRs can be used to simulate inter-person contacts.

To that end, we developed a simulator for epidemic routing [33].
At random times in the CDR trace, a message is injected from a ran-
dom source to a random destination. As users meet they exchange
all messages. For the purposes of this simplified experiment, users
“meet” if their last known positions are the same within one hun-
dredth of a degree of latitude and longitude (roughly a circle with a
radius of 0.5 miles). When the message reaches its intended recip-
ient, the time is recorded. This allows us to examine properties of
the CDRs, including delivery percentages and message delay rates.
Note that only a small subset of all users is considered for this ex-
periment, as our full user base would ensure message delivery re-
gardless of movement patterns. Here, we limit the experiment to
5,000 messages passed between 5,000 users in the New York area
over 30 days.

Table 4 displays statistics regarding message passing success in
the real CDRs as well as in our synthetically constructed models.
Although even WHERE3 is far from the actual values, it is clear
that adding the third location provides significant improvement.
This is consistent with the idea that opportunistic networking re-
lies on highly mobile users [36].

We stress that these results are based on the most basic version
of the model. This example is provided to demonstrate the extensi-
bility of the model as more clusters are added.

7.3 Hypothetical Cities
A major advantage of mobility models over empirically-gathered

real-world CDRs is the ability to create parameterized model of
cities and user behavior patterns that cannot be observed in the
real world. This allows researchers and city planners considerable
power to experiment with the effects of modifications that are being
considered.

As one example, Figure 13 shows a box plot of data that can be
constructed from artificial CDRs if we imagine a scenario intended
to study the impact of telecommuting. In this case, we adjusted
the WHERE2 model for NY so that a randomly selected 10% of
the people whose original work locations were in the borough of
Manhattan were instead given work locations that matched their
home location. Such a scenario might arise, for example, if tolls
or subway fares were increased, or if the city enacted policies to
encourage telecommuting. With only 10% of the Manhattan work-
ers affected, the impact on daily range is subtle, but noticeable; the
results do demonstrate the trend that daily ranges would be slightly
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10% of Manhattan workers opt to telecommute.

diminished by this change. In general, the power of such exam-
ples is in allowing model users to explore the impact of different
mobility and behavioral changes on their metric of interest.

This example demonstrates the flexibility of our modeling ap-
proach. Experiments that are not feasible in reality (e.g., convinc-
ing 10% of New Yorkers to telecommute) are simply a matter of
adjusting some input probabilities.

8. Discussion and Future Work
As we have shown, our approach to human mobility modeling

achieves its three main goals: capturing the motion of individuals
among important places in their lives, aggregating that motion to
reproduce human densities over time at the scale of a metropolitan
area, and accounting for differences between metropolitan areas.
However, there remain areas for refinement.

8.1 Travel Routes and Additional Locations
One such refinement would be to produce not only sequences of

locations with associated times, but also routes taken between those
locations. A tradeoff we incurred in obtaining location information
for large populations in wide geographic regions is that both real
CDRs and census tables are too coarse to provide route informa-
tion. So far we have not attempted to improve on the spatial and
temporal granularity of our source data, although other work [4] has
had some success in identifying routes by making use of individual
cellular antennas (not only towers that hold multiple antennas) and
by analyzing longer sequences of antennas involved in the same
call (not only the start and end towers).

In future work, we plan to infer such routes by using maps of
transportation networks to interpolate between the locations pro-
duced by our current models. A similar idea has been applied to
finer-grained location traces in smaller geographic regions, in par-
ticular traces of WiFi access-point associations in a university cam-
pus [34]. Working at the scale of metropolitan areas adds complex-
ity because it becomes important to distinguish between modes of
transportation beyond walking, e.g., driving a car, taking a train, or
riding a bicycle. We can obtain some of the necessary information
from public sources such as Table P30, Summary File 3, from the
2000 US Census: "Means of Transportation to Work for Workers
16+ Years" [32]. In addition, we can apply heuristics based on the
distance and time between two location samples.

Once we select a mode of transportation between two locations,
we can run proven routing algorithms such as those used by popu-
lar websites that provide driving, public transportation, biking, and



walking directions [14]. Human mobility models that include route
estimates would have broader applicability than those that produce
only locations and times.

In addition, WHERE currently restricts users to a limited num-
ber of places. Future research directions may include incorporating
heuristics about additional locations that a person may visit, per-
haps by using WRWP as a rare, but possible additional destination.
While it is true that the majority of movement occurs between im-
portant locations, there may be applications (such as the message
passing experiment listed in Section 7.2) that could benefit from
information about the long tail of other locations a person visits.

8.2 Differential Privacy
It is also worthwhile to discuss why we believe that our approach

to human mobility modeling will preserve privacy. The intuitive
reason is that we are careful not to reproduce the mobility pattern
of any individual real person, for example someone represented in
an input dataset of real CDRs. Instead, we create synthetic mobility
patterns by sampling a sequence of probability distributions that
each represents a large population. This approach makes it highly
unlikely that any of our synthetic people exhibits a mobility pattern
that identifies a single real person. However, the approach does not
ensure that an adversary will be unable to reverse our algorithm to
arrive at some portion of the source dataset, especially an adversary
who brings to bear auxiliary datasets.

In future work, we plan to formalize our privacy argument by
adjusting our algorithm to achieve differential privacy [7]. Infor-
mally, a differentially private algorithm is one that produces ap-
proximately the same output on two input datasets that differ only
in the data for one individual. Our modeling approach naturally
lends itself to a proven technique for achieving differential privacy
without significantly affecting accuracy, namely to introduce con-
trolled noise at key points in the algorithm. For example, we could
introduce noise in the input CDRs, or when sampling one or more
of our input probability distributions. Similar techniques have been
successfully applied to network traffic traces [23].

We plan to show that our adjusted algorithm has the property
that an individual’s presence or absence in the input dataset will
not alter the output by a significant amount. This property provides
strong privacy guarantees in an information theoretic sense, regard-
less of how much auxiliary data an adversary applies.

9. Related Work
Characterizing human mobility based on cellular network data

has recently received considerable attention. In our previous work [16],
we developed an algorithm for identifying people’s important loca-
tions based on anonymized cellular network data, and showed how
to use these important locations to estimate home-to-work com-
mute distances and commute carbon footprints for large popula-
tions in the New York and Los Angeles metropolitan areas. In other
previous work [18, 17], we also characterized the daily range of
travel of those same populations. Girardin et al. used cell phone
usage within cities to determine locations of users in Rome [9],
New York City [11], and Florence [10]. They were able to find
where people clustered in these cities and the major paths people
tended to take. The work presented in this paper goes beyond char-
acterization to develop algorithms for constructing human mobility
models from both cellular network data and census data.

A number of previous efforts attempted to model human mobil-
ity at various scales. Rhee et al. [28] studied statistical patterns
of 44 participants carrying GPS devices for four months and con-
cluded that people’s movement has a resemblance to Levy flights,

random walks where the step-length probability has a heavy-tailed
distribution. They also proposed a Levy walk mobility model that
can be used for network simulations. Kim et al. [20] developed an
algorithm for extracting a human mobility model from wireless net-
work traces collected from WiFi APs at Dartmouth College. Yoon
et al. [34] present a trace-driven framework for generating realis-
tic mobility models based on the association information between
WiFi users and access points and maps of the area where WiFi
traces were collected. Hsu et al. [15] used WLAN traces to ex-
tract a time-variant community mobility model that showed good
performance via simulation. In contrast, we developed and vali-
dated mobility models based on CDRs for hundreds of thousands
of people moving across large metropolitan areas.

González et al. [13] used cellular network data from an unnamed
European country to create a universal model of how individuals
move. Song et al. [31] studied similar cellular network data to pre-
dict an individual’s movements. Specifically, the authors consider
the towers associated with phone users and show that given suffi-
cient past history, one could guess the current location of a given
user with high accuracy. Other efforts have developed algorithms
for predicting where a user will travel next [3, 6, 22]. To our knowl-
edge, we are the first to develop and validate models that account
for differences between geographic areas.

Several recent papers have looked at the privacy risks of releas-
ing location traces. Krumm [21] showed that home addresses of
individuals who shared their GPS traces could be accurately iden-
tified based on the combination of reverse geo-coding and white
pages. Golle and Partridge [12] used the publicly available cen-
sus data to show that knowing a person’s home and work locations,
even at a coarse resolution, is often enough to uniquely identify
that person. Finally, Zang and Bolot [35] showed that releasing
anonymized CDRs in its original format poses serious privacy risks,
as a large fraction of the population could be re-identified from the
anonymous data. These papers motivated us to look beyond a sim-
ple anonymization of location traces. In the future, we plan to show
that WHERE preserves differential privacy.

10. Conclusions
Modeling human mobility is important for mobile computing

research, urban planning, epidemiology, and ecology. In this pa-
per, we proposed a method for generating realistic human mobility
models for large metropolitan areas from real Call Detail Records
(CDRs) and census data. Our models generate spatio-temporal data
in the form of synthetic CDRs, which could then be processed by
the same algorithms that operate on the real ones. We also demon-
strated how our method can be extended to create more precise
models of human mobility.

We validated our methodology by first showing that our synthetic
CDRs maintain key properties of the real CDRs, in particular hu-
man densities over time. We then demonstrated that our WHERE
model is more accurate than other models such as Random Way-
point and Weighted Random Waypoint. Finally, we gave examples
of experiments enabled by our models, and demonstrated that our
synthetic CDRs perform well compared to the real CDRs. Specifi-
cally, we showed that we can calculate median daily ranges with an
error at the median of less than 1 mile, and good agreement across
the rest of the distribution. In future work, we plan to show that our
modeling approach preserves differential privacy, at which point
we hope to release our models to the broader research community.
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