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Abstract

Many application-level traffic streams, or conversations, are multiplexed at the points
where local-area networks meet the wide-area portion of an internetwork. Multiplexing policies
and mechanisms acting at these points should provide good performance to each conversation,
allocate network resources fairly among conversations, and make efficient use of network
resources.

In order to characterize wide-area network traffic, we have analyzed traces from four Inter-
net sites. We identify characteristics common to all conversations of each major type of traffic,
and find that these characteristics are stable across time and geographic site. Our results contrad-
ict many prevalent beliefs. For example, previous simulation models of wide-area traffic have
assumed bulk transfers ranging from 80 Kilobytes to 2 Megabytes of data. In contrast, we find
that up to 90% of all bulk transfers involve 10 Kilobytes or less. This and other findings may
affect results of previous studies and should be taken into account in future models of wide-area
traffic.

We derive from our traces a new workload model for driving simulations of wide-area
internetworks. It generates traffic for individual conversations of each major type of traffic. The
model accurately and efficiently reproduces behavior specific to each traffic type by sampling
measured probability distributions through the inverse transform method. Our model is valid for
network conditions other than those prevalent during the measurements because it samples only
network-independent traffic characteristics. We also describe a new wide-area internetwork
simulator that includes both our workload model and realistic models of network components.

We then present a simulation study of policies for multiplexing datagrams over virtual cir-
cuits at the entrance to wide-area networks. We compare schemes for mapping conversations to
virtual circuits and queueing disciplines for scheduling datagrams onto virtual circuits. We find
that networks should establish one virtual circuit per type of traffic flowing between two network
points of presence, and provide round-robin service to transmission resources shared by virtual
circuits. This multiplexing policy exhibits good performance and consumes moderate amounts
of resources at the expense of some fairness among traffic sources of the same type. In particu-
lar, it maintains interactive delay nearly constant and close to the possible minimum, and main-
tains bulk transfer throughput near the possible maximum, even as network load increases
beyond saturation. Furthermore, it results in bottleneck buffer consumption that rises slowly
with offered load. Other multiplexing policies exhibit interactive delay that increases with
offered load, and buffer consumption that rises quickly with offered load.

Again using our traffic characterization, we evaluate mechanisms for multiplexing
variable-sized datagrams onto small fixed-size cells. Cells offer performance and implementa-
tion advantages to networks that service many types of traffic, but they incur bandwidth
inefficiencies due to protocol headers and cell fragmentation. We find that cell-based networks
using standard protocols are inefficient in carrying wide-area data traffic. For example, ATM-
based networks using SMDS and IEEE 802.6 protocols lose more than 40% of their bandwidth
to overhead at the network level and below. Furthermore, we find that viable compression tech-
niques can significantly improve efficiency. For example, a combination of three compression
techniques can regain more than 20% of the bandwidth previously lost to overhead.
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1. Introduction

Lo, soul, seest thou not God’s purpose from the first?
The earth to be spann’d, connected by network,
The races, neighbors, to marry and be given in marriage,
The oceans to be cross’d, the distant brought near,
The lands to be welded together.

Walt Whitman, Leaves of Grass, 1892

Communication networks have changed the way people interact. The telegraph first
allowed fast, reliable communication over long distances. The telephone network now links a
significant portion of the world’s population. Data networks hold the promise of further improv-
ing human communication as we increasingly rely on access to widely dispersed information.
However, many challenges remain before data networks can serve as many people as today’s
telephone network.

This dissertation addresses problems that arise from the aggregation of traffic in large data
networks. It characterizes sources of traffic and evaluates ways to mix, or multiplex, traffic from
many different sources at the entrance to wide-area networks. It presents multiplexing policies
and mechanisms that provide good performance and fair treatment to each source of traffic while
making efficient use of network resources.

1.1. Context

Throughout this work we are concerned with wide-area internetworks of the type shown in
Figure 1.1. Host computers communicate through the internetwork with other, geographically
distant, hosts. Hosts are directly connected to a local-area network (LAN). Local-area networks
are in turn connected to the wide-area portion of the network (WAN) through router systems.
Routers communicate with other routers through the wide-area network. The wide-area network
is itself composed of a collection of switching nodes and communication links (not shown in the
figure). In general, data flows from a source host, over a LAN, through an input router, over the
WAN, through an output router, over another LAN, and finally to a destination host.

Application programs running on the hosts are the ultimate sources and sinks of network
traffic. Examples of traditional wide-area network applications are file transfers, electronic
mail, network news, and remote terminal sessions. These traditional applications fall into two
broad categories: bulk transfer (file transfers, electronic mail, and network news) and interactive
(remote terminal sessions). Examples of non-traditional applications are voice, high-fidelity
audio, and video.

We use the term conversation to mean the stream of traffic flowing between an application
program on one host and an application program on another host. Conversations are of different
types, corresponding to the different applications using the network. For example, we speak of
file transfer conversations and electronic mail conversations. Each type may offer a different
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Figure 1.1. A Wide-Area Internetwork

workload to the network and demand a different level of performance from the network.

1.2. Traffic Multiplexing Objectives

Many conversations of different types come together at the entrance to wide-area networks.
Our work aims to define policies and mechanisms for multiplexing traffic at a router that satisfy
the following criteria: performance, fairness, and efficiency. We motivate these three objectives
below.

First, each conversation should obtain the performance desired by the application that
drives it. For example, bulk transfer applications transmit batch data such as files. They are
concerned mostly with throughput, or how fast data is carried by the network. In contrast,
interactive applications transmit interactive data such as keystrokes. They are concerned with
delay, or the response time of the network. Within the limits of available resources, network
control policies should provide high throughput to bulk transfer applications and low delay to
interactive applications.

Second, the network should allocate its resources fairly among all conversations. In partic-
ular, it should provide low delay to interactive applications in spite of high offered loads from
bulk transfer applications. It should not let high volumes of bulk data monopolize the network at
the expense of low volumes of interactive data. In addition, all conversations of the same type
should obtain equal performance.

Third, the network should make efficient use of its resources. In particular, it should not
waste bandwidth or buffer space. High-speed wide-area networks include costly hardware com-
ponents such as routers and switches that are made more expensive by their memory require-
ments. These networks also use expensive long-haul communication lines. Network control
schemes with low buffer requirements are preferable over schemes with high buffer require-
ments. Similarly, protocols and multiplexing techniques that conserve bandwidth are preferable
over those that waste bandwidth.

Our discussion is in the context of networks whose users are willing to pay for the level of
performance desired by their applications, or networks that charge all users equally (including
networks that do not charge). In networks where these conditions do not hold, the above three
multiplexing objectives take on a slightly different form. First, a conversation should obtain the
grade of service that has been mutually agreed upon by the network user and provider. A
conversation may obtain a lower grade of service than that desired by the associated application.
Second, the network should allocate its resources according to grade of service contracts. It may
allocate more resources to conversations that have contracted for a higher grade of service than
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to those who have contracted for a lower grade, even if the underlying application is the same.
Third, although efficiency remains an important consideration, an overriding goal is to minimize
the investment required to provide the services contracted for. Inefficiencies may occur if they
are unavoidable to insure a grade of service that users are willing to pay for.

1.3. Motivation

Our work is motivated by the failure of past networks to meet the stated multiplexing
objectives and by trends in future networking.

We use two examples to illustrate the shortcomings of past networks. First, consider
NSFnet [82]. NSFnet is a 1.5 Megabit/second, U.S. cross-country network that forms the back-
bone for the current Internet. Although its communication links have been gradually upgraded
to 45 Megabit/second over the last two years, it continues to suffer from congestion due to the
growth of the Internet. More to the point, in the face of this congestion, NSFnet gives poor per-
formance to interactive applications − cross-country response times longer than 100-200 mil-
liseconds are common, and much longer delays are not rare.† Studies have found that humans
perceive interactive response to be ‘‘bad’’ when it takes longer than 100-200 milliseconds [90].

This behavior is a result of the networks’s traffic multiplexing policies. NSFnet does not
separate different conversations or types of traffic. It treats all traffic the same way in a first-in
first-out basis. Short interactive packets compete for resources with much larger bulk transfer
packets and thus incur high delays. It is often difficult for interactive users to work productively
across NSFnet.

Second, consider Xunet 1 [96]. Xunet 1 was an experimental 1.5 Megabit/second, U.S.
cross-country network that was dismantled in early 1991. It was based on Datakit [33] switches,
which separated the traffic from different conversations and gave priority to short packets. This
policy avoided interactive delay problems − cross-country response times remained well below
100 milliseconds even under congestion. However, Xunet 1 did not make efficient use of its
bandwidth resources − the aggregate throughput of bulk transfer applications never reached the
full bandwidth of the network.‡

This behavior was due to a combination of the network’s multiplexing policies and its lack
of buffer memory. The Datakit design dictates that, at each switch, each conversation be allo-
cated an amount of buffer space equal to the network’s round-trip window. The round-trip win-
dow is the network’s inherent storage capacity, that is, the product of its bandwidth and round-
trip propagation delay. Since congestion at a link can cause an entire window of data to tem-
porarily accumulate in the buffer in front of the congested link, this much buffer space insures
that the network does not drop data and senders can successfully utilize the full bandwidth of the
network. However, even allowing for rapidly declining memory prices, the costs of implement-
ing this design in high-speed wide-area networks can be prohibitive.

Table 1.1 shows the size of one round-trip window for a hypothetical continental network
with different speeds. It assumes a 45-millisecond round-trip delay that approximates the
speed-of-light propagation delay across 6,000 miles of glass fiber. This much memory is� ���������������������������
† Measured between the University of California in Berkeley and AT&T Bell Laboratories in
Murray Hill, New Jersey, on a typical weekday afternoon.
‡ Measured between the University of California at Berkeley and AT&T Bell Laboratories in
Murray Hill, New Jersey, under various load conditions.
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Table 1.1. Round-trip windows for a network with a 45-millisecond round-trip time

necessary for each conversation flowing through each Datakit switch. Xunet 1 switches did not
have enough buffer memory to support high throughput across long distances.

Five trends involving wide-area internetworks suggest that the problems just described will
intensify. First, long-haul communication speeds are increasing. Second, local-area network
speeds are increasing. Third, host speeds are increasing. Fourth, the number of traffic types is
increasing. Fifth, the number of local-area networks and hosts connected to wide-area internet-
works is increasing. For wide-area networks, these trends portend the following three condi-
tions. First, there will be increasing demands for resources, both bandwidth and memory.
Second, there will be a need for more grades of service, in particular delay and throughput.
Third, there will continue to be congestion due to the aggregation of traffic.

We see a need for better traffic multiplexing policies and mechanisms. We aim to find
techniques that avoid the shortcomings of past networks and accommodate the demands of
future networks. In particular, we would like to prevent a stream of traffic from interfering with
the performance of another stream, and to make efficient use of memory and bandwidth.

1.4. Scope of the Investigation

All wide-area networks multiplex data at their entrance. There are many types of networks
carrying many different workloads. It would be impractical to explore every aspect of the multi-
plexing problem as described so far. Instead, we concentrate on an important class of network
and workload, namely, cell-based virtual circuit networks that carry traditional datagram
traffic. We define the scope of our investigation below.

1.4.1. Datagrams over Virtual Circuits

Datagrams and virtual circuits are widely used data communication styles. The two terms
have been defined many ways. A useful analogy compares datagrams to the common postal ser-
vice, and virtual circuits to ordinary telephone service [98]. Like letters flowing through the pos-
tal system, datagrams are individually addressed and delivered items of information. A
datagram service delivers information with no guarantees regarding ordering or reliability. In
contrast, like voice conversations in the telephone system, virtual circuits set up and tear down a
path through the network before and after their use. A virtual circuit service delivers informa-
tion in the same order it was sent, although not necessarily free of errors.

Throughout this work, we use the following restricted definition of virtual circuits. Virtual
circuits imply only three things: a connection establishment and teardown procedure, a fixed
path through the network for the lifetime of a virtual circuit, and a separate queue for each
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virtual circuit at each queueing point. We do not assume many other features that are sometimes
associated with virtual circuits. For example, we do not assume any reservation of resources,
either memory or bandwidth; all data is statistically multiplexed. We also do not assume any
error recovery beyond checks for the integrity of protocol headers.

There is a long history of wide-area networks that transport datagrams over virtual circuits,
and such networks continue to exist. In these networks, hosts outside the wide-area portion of
the network exchange datagrams, while nodes inside and at the edge of the wide-area portion of
the network communicate through virtual circuits. The Advanced Research Projects Agency
Network (ARPANET) [82], built in the late 1960’s and used until the late 1980’s, used virtual
circuits for communication between its internal nodes, or Interface Message Processors (IMPs).
However, ARPANET hosts exchanged datagrams from the Internet Protocol (IP) [15]. More
recent networks built in the 1980’s carried IP datagrams over X.25 virtual circuits [65], for
example the Defense Data Network (DDN) [24] and parts of the Computer Science Network
(CSNET) [14].

There will also be future virtual-circuit-based networks that carry datagrams. Although
there are competing opinions as to how networks will evolve, there is widespread agreement that
future networks will be integrated. An integrated network is one that carries many different
types of traffic − traditional data traffic as well as non-traditional traffic. A prominent design
calls for Broadband Integrated Services Digital Networks (B-ISDN) based on Asynchronous
Transfer Mode (ATM) virtual circuits [41] [72]. New traffic types are appearing because
increasing communication speeds now allow networks to support applications with stringent
bandwidth and delay requirements, for example audio and video. It is not yet clear what proto-
cols these new applications will use. However, traditional traffic will continue to use well-
established datagram protocols such as IP over the new ATM virtual circuits.

The reasons for this mix of styles are many. Datagrams are attractive for end-to-end inter-
network applications, while virtual circuits offer advantages to providers of integrated-services
wide-area networks. Some network applications like Remote Procedure Call (RPC) [8] are
natural datagram applications. They exchange data in largely independent pieces that do not fit
well in the virtual circuit mold. On the other hand, a large network based on virtual circuits is
easier to manage than one based on datagrams. A virtual circuit is a convenient unit on which to
carry out flow control and congestion control policies, allocate bandwidth and delay, and per-
form accounting. For example, it is easier for a virtual circuit network than for a datagram net-
work to apply back-pressure along a path back to a misbehaving source, because each virtual cir-
cuit uniquely identifies a complete path from source to destination, while datagrams between the
same source and destination may follow different paths.

1.4.2. Cell Networks

There will also be future cell-based networks, again due to the push for service integration.
Cells are small, fixed-length units of data. For example, ATM networks use cells that are 53
bytes long. Before transporting application data units such as variable-sized datagrams, the net-
work fragments them into cells. Cells are the basic multiplexing unit throughout the network.
They allow fine control over bandwidth and delay allocation. Small cells provide lower delay
than large datagrams because a short multiplexing unit quickly frees up resources for units from
other conversations. No multiplexing unit is forced to wait for a long unit to complete transmis-
sion. The fixed-size nature of cells also allows efficient hardware implementations since the net-
work always deals with homogeneous units of data. Thus, cells offer performance and



- 6 -

implementation advantages to integrated networks.

1.4.3. Traditional Data Traffic

Our choice of workload is traditional data traffic, by which we mean traffic from existing
wide-area network applications such as file transfers, electronic mail, network news, and remote
terminal sessions. We chose this workload because we can accurately characterize it through
direct measurements of current network traffic. Future networks will begin to carry audio and
video traffic with characteristics different from current traffic. However, representative quanti-
ties of this traffic are not available for measurement. Furthermore, traditional forms of traffic
will prevail for several years and will continue to be used for much longer. As a result, future
networks, including B-ISDN networks based on ATM, must efficiently support traditional traffic.

1.5. Applicability of Results

Although we have narrowed the scope of our investigation, our results will be applicable to
a wide range of networks. For example, our results could contribute to the design of future
datagram-based networks as well as future reservation-based networks. We will return to the
applicability issue at the end of the dissertation, after we have presented our work in detail.

1.6. Underlying Approach

We take an empirical approach to our work that is seldom used in wide-area network
research. There is considerable research activity addressing the needs of future types of traffic,
in particular real-time traffic like audio and video [44] [45]. These studies make educated
guesses as to the characteristics of future traffic and use these best-guess models to make net-
work design decisions. No other approach is possible with traffic that does not yet exist.

However, we can do much better with mature traffic types. File transfers and remote termi-
nal sessions have been important applications of wide-area networks for close to 20 years [61].
We expect that many characteristics of these traffic types remain stable or can be parametrized
to track changes in technology. Nevertheless, no realistic per-conversation models of wide-area
traffic exist. We should be able to accurately characterize this traffic from observations of real
networks, without relying on our intuition. We can use what we learn to tune existing networks
and design new ones.

This dissertation exemplifies this empirical approach to network research. We measure real
networks and identify the characteristics of their traffic. We find that many important charac-
teristics are indeed stable. We then derive traffic models directly from the measurements.
Finally, we use these models to study traffic multiplexing at the entrance to wide-area networks.
Through simulation, we evaluate different multiplexing policies in terms of their performance,
fairness, and efficient use of buffer memory. We also evaluate different network protocols and
multiplexing techniques in terms of their efficient use of bandwidth.

1.7. Outline of the Dissertation

Chapters 2 through 5 constitute the main body of this dissertation. They present our work
in the areas of traffic characterization, network simulation, multiplexing policies, and transmis-
sion efficiency, respectively. Each of these chapters also surveys previous work in the area it
addresses. We outline these chapters below.
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Chapter 2 characterizes the traffic flowing between the local-area and wide-area portions of
a hierarchical internetwork. We have traced all traffic flowing in and out of two universities and
two industrial research laboratories at the point their local networks connect to the rest of the
Internet. The traces represent four different and geographically separate organizations, capture
several days of continuous network activity at each site, and span one year and a half.

For each application responsible for a significant percentage of wide-area traffic, we iden-
tify characteristics common to all conversations of that type. We found that file transfers, net-
work news, electronic mail, and remote terminal sessions account for the majority of packets,
bytes, and conversations in current wide-area traffic. We present probability distributions for the
number of bytes and packets per conversation, the duration of conversations, the time between
packet arrivals, and the size of packets, among other statistics. These traffic characteristics con-
tradict many common beliefs and shed light on many network research problems, including
traffic multiplexing at the entrance to wide-area networks.

Chapter 3 describes VCSIM (Virtual Circuit Simulator), a new simulator of wide-area
internetworks. VCSIM has two main aspects: its workload model and its network model. From
the traffic characteristics of Chapter 2 we derive a new workload model for driving wide-area
network simulations. It takes the form of a generative traffic model for individual application-
level conversations of each major type of traffic. The model incorporates both detailed
knowledge of application program behavior and the measured probability distributions just
described, the latter sampled through the inverse transform method. Our workload model is
network-independent, realistic, and efficient.

VCSIM also includes realistic models of wide-area internetwork components, including
hosts, routers, switching elements, and communication lines. Hosts are sources and sinks of
datagram traffic driven by the workload model just described. Of particular importance to our
study, routers simulate a variety of traffic multiplexing policies. Routers fragment datagrams
into cells and send the cells on virtual circuits through the wide-area portion of the network.
Routers also reassemble packets from the component cells and pass the packets on to hosts.
Switches transfer cells along virtual circuit paths through the network, and links carry packets
and cells between the other components. VCSIM facilitates the study of multiplexing datagram
traffic at the entrance to cell-based virtual circuit networks.

Chapter 4 turns to the problem of multiplexing datagrams over virtual circuits. The coex-
istence of datagrams and virtual circuits creates problems for multiplexing policies at the
entrance to a wide-area network. Datagrams arrive at a router and must find a virtual circuit to
go on. Routers must assign datagrams to virtual circuits and choose the order in which to
transmit datagrams onto the wide-area portion of the network.

Through simulation, we assess the benefits and drawbacks of different multiplexing policies
acting at a router, subject to our performance, fairness, and efficiency criteria. We evaluate three
schemes for mapping a set of application-level conversations onto a possibly smaller set of vir-
tual circuits: establishing one virtual circuit per conversation, establishing one virtual circuit per
traffic type, and establishing one virtual circuit per destination router. We also evaluate two
queueing disciplines for scheduling datagrams onto these virtual circuits: first-in first-out and
round-robin. We find that the multiplexing objectives are best served when the network
separates traffic types by giving each type its own virtual circuit. In addition, networks should
provide round-robin service to transmission resources shared among virtual circuits.
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Chapter 5 addresses another aspect of multiplexing wide-area data traffic over cell-based
networks, namely transmission efficiency, or the ratio of useful bytes to total bytes carried by a
network. Small fixed-size cells offer many advantages over variable-size datagrams in
integrated-services networks like those based on ATM. However, cells incur bandwidth
inefficiencies due to protocol headers and fragmentation. Again using our traffic characteriza-
tion, we compare the efficiency of three ATM-related protocol combinations. We also calculate
the efficiency effects of three non-standard compression techniques, and discuss how to imple-
ment these techniques cheaply.

We find that networks using standard ATM procedures are inefficient in carrying wide-area
data traffic − depending on the protocols used, ATM-related overhead consumes 23 to 41% of
the network bandwidth. Moreover, due to interaction between datagram lengths and cell pad-
ding, efficiency responds abruptly to changes in certain protocol parameters − for example, a 4-
byte increase in cell size can yield a 10% increase in efficiency. Using one compression tech-
nique in isolation can improve efficiency by 12%, and simultaneously using three techniques can
improve it by 31%. These issues should be considered when designing future networks.

Chapter 6 concludes this dissertation by summarizing our contributions, pointing out the
applicability of our results, suggesting areas for future work, and commenting on the benefits of
our methodology.

Appendices A through C present work that would detract from the readability of the
dissertation’s main body. Appendix A is a comparison of traffic characteristics from three sites
at which traffic was measured. It shows that many per-conversation characteristics are common
across all sites, allowing us to use one site as representative. Appendix B is a comparison of
transmission efficiency results obtained with data from four sites at which traffic was measured.
Due to the uniformity of traffic characteristics already noted, efficiency is also uniform across
sites, allowing us to use one set of results as representative. Finally, Appendix C is a glossary of
acronyms and abbreviations used throughout the dissertation.



- 9 -

2. Traffic Characterization

2.1. Introduction

Human intuition is often wrong when relied upon to characterize the behavior of complex
systems. Large computer networks are some of the most complex systems ever built, with mil-
lions of independent components operating at minuscule time scales. A study of network perfor-
mance needs an accurate workload model, that is, a model of the traffic injected into the net-
work. Measurements of network traffic are valuable because they provide a snapshot of real
workloads. This chapter presents a set of detailed traffic measurements of the Internet taken
between 1989 and 1991. As we shall see, the measured characteristics contradict many common
beliefs.

In order to drive our network simulations with realistic models of existing traffic sources,
we gathered traces of real network traffic. We aim to investigate wide-area network issues, more
specifically traffic multiplexing issues at the junction between local-area and wide-area net-
works. The traces used in this study were taken exclusively from such junction points in the
current Internet. They therefore exhibit packet length, packet interarrival time, and other charac-
teristics that accurately represent what current Internet routers are exposed to. These traces are
more appropriate for our research than traces gathered in local-area networks or in other points
of a wide-area network. In the next chapter, we derive from these traces generative models for
individual sources of different types of traffic.

We chose to measure the Internet because it is the most successful example of a large inter-
network and it is growing rapidly. To appreciate the size of the Internet, consider that more than
500,000 hosts throughout the world are registered in the Internet name domain system [66]. In
addition, the Internet backbone, NSFnet, links over 2,300 university, industry, and government
networks [71]. To this vast internetwork, large numbers of subnetworks are being attached on an
almost daily basis: more than 720 new subnetworks joined the NSFnet backbone in the eighteen
months between January, 1990, and June, 1991, and 38 subnetworks joined in the second week
of June, 1991, alone [70].

When analyzing wide-area network traffic, we are interested in such questions as:� How does traffic break down into interactive and bulk traffic?� How ‘‘bulky’’ is the data transmitted by bulk transfer applications?	 What are the characteristics of conversations in terms of packets transferred, bytes
transferred, duration, and packet interarrival time?
 Is traffic flow unidirectional or bidirectional?
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The following summarizes our most important observations regarding wide-area data
traffic.�

Interactive applications are responsible for 40% of wide-area packets, but less than 10% of
wide-area bytes.� Depending on the application, 60 to 90% of the conversations categorized as bulk transfers
send less than 10 Kilobytes of data. Bulk transfer is request-response in nature, with
responses larger than 1 Megabyte responsible for only 15 to 20% of all bytes transferred. Over 80% of interactive conversations send fewer than 1,000 packets and 10 Kilobytes, and
50% of interactive conversations last less than 200 seconds.� A large portion of bulk transfer applications, which are responsible for more than 50% of
observed network traffic, show bidirectional traffic flow (even after excluding transport-
level acknowledgements and other control information).� Interactive applications can generate 10 times more data in one direction than the other, and
generate packet sizes ranging from the minimum to the maximum supported by the net-
work.

The next section references previous work in the area of network traffic measurement,
while the rest of this chapter discusses our own measurements in more detail. Section 2.3
presents the methodology used in our measurements. It describes the sites where we gathered
our traces, what the traces contain, the instruments used to gather them, and their applicability
beyond the time and place they were gathered. Section 2.4 outlines how we refined the raw
traces to obtain meaningful traffic statistics. Section 2.5 presents characteristics of wide-area
TCP conversations in terms of measured probability distributions of many important statistics.
Section 2.6 concludes this chapter by pointing out the implications of our findings.

2.2. Previous Work

Researchers have long used traffic measurements to gain insight on network behavior.
There have been many local-area and wide-area network measurement studies, for example
those listed in the bibliographies by Mogul [73] and Pawlita [80]. Below, we survey those stu-
dies most relevant to our research. Our study was the first to separate wide-area traffic into
user-level conversations and extract per-conversation statistics using the complete stream of
packets belonging to a conversation.

In the late 1960’s, Jackson and Stubbs [46] and Fuchs and Jackson [36] measured
application-level characteristics of low-speed, half-duplex terminal traffic in a local-area
environment. In the mid-1980’s, Marshall and Morgan [69] measured similar characteristics in a
Datakit local-area network that supported hosts accessed by terminals and diskless workstations
over 9.6 Kilobit/second links. They identified distributions of interactive burst lengths and inter-
burst intervals, and distributions of file transfer sizes and interarrival times. Later in this chapter,
we draw interesting parallels between these early findings and our more recent measured charac-
teristics of wide-area interactive conversations.

Gusella [38] analyzed diskless workstation traffic on a 10 Megabit/second Ethernet local-
area network. He used a measurement methodology similar to ours, and went on to characterize
different types of traffic sources, as we are doing. However, his study was limited to local-area
networks. His traffic mix was thus dominated by network file system and window system traffic,
unlike the wide-area traffic mix we present later in this chapter. In another example of
measurement-based analysis, Jain and Routhier [49] derived a new model of traffic, the packet



- 11 -

train, based on local-area network observations. Neither of these studies separated application-
level conversations.

In a more recent effort, Leland and Wilson [63] reported on high time-resolution measure-
ment and analysis of Ethernet traffic. Again, this was only a local-area network study that did
not separate conversations, but the network monitor they constructed was also used to collect
traces of wide-area Internet traffic. We used these wide-area traces in our research, as described
in the next section.

The next section also describes three other traces of wide-area Internet traffic used in our
research. In a preliminary study, we extracted from one of these traces packet length charac-
teristics broken down by the type of application responsible for the traffic [11]. In a further
study involving three traces, we separated packet streams of user-level conversations and
reported per-conversation statistics [12].

Since these earlier measurements, there has been considerable activity in the measurement
and analysis of wide-area network traffic. Heimlich [43] analyzed aggregate traffic on the
NSFnet national backbone and found evidence to support the packet train model. Crowcroft and
Wakeman [18] inspected all Internet traffic flowing between the United Kingdom and the United
States. Paxson [81] measured traffic entering and leaving Lawrence Berkeley Laboratory in
Berkeley, California. Schmidt and Campbell [86] traced traffic at three different points: a local-
area network at the University of Illinois at Urbana-Champaign, where the local networks at that
university meet the corresponding NSFnet regional network, and the nearest NSFnet backbone
node.

The latter three studies identified beginnings and ends of user-level conversations, but did
not record the intervening packets. Thus, they report overall characteristics of conversations
such as duration and number of bytes transferred, and their findings corroborate ours. However,
they do not extract many of the detailed characteristics we present later in this chapter.

2.3. Measurement Methodology

2.3.1. Measurement Sites

We would like to characterize the traffic flowing through the junction points between
local-area and wide-area portions of the current Internet. For this purpose, we obtained traffic
traces from two universities and two industrial research laboratories: the University of California
in Berkeley UCB), the University of Southern California (USC) in Los Angeles, AT&T Bell
Laboratories (Bell Labs, BL) in Murray Hill, New Jersey, and Bell Communications Research
(Bellcore, BCR) in Morristown, New Jersey. We gathered packet headers from the gateway Eth-
ernet carrying all traffic between the local networks at each site and the corresponding regional
access network: the Bay Area Regional Research Network (BARRnet) for Berkeley, Los Nettos
for USC, and the John Von Neumann Center Network (JVNCnet) for Bell Labs and Bellcore.
We filtered out local and transit traffic but kept all IP datagrams flowing between each site and
the rest of the world.

At Bell Labs, we inspected one full week day and one full weekend day of traffic during
July, 1989. We collected a full week of traces for both Berkeley and Bellcore during the
October-November, 1989, time frame. We repeated the exercise more than a year later in Janu-
ary, 1991, and captured several days of activity at USC. The Berkeley and USC data should be
representative of wide-area network traffic at a major university campus, while the Bell Labs and
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Bellcore data should play a similar role for large corporate sites.

Here we present the analysis of 24 hours of traces from each site. The analysis is for meas-
urements that began at 10:30 on Tuesday, October 31, 1989, at Berkeley; 14:24 on Tuesday,
January 22, 1991, at USC; 7:59 on Thursday, July 13, 1989, at Bell Labs; and 14:37 on Tuesday,
October 10, 1989, at Bellcore.

2.3.2. Trace Format

The traces from Berkeley, USC, and Bellcore were saved on 8-millimeter helical scan mag-
netic tapes. Every network packet generated a trace record consisting of a time stamp and the
first 56 bytes of raw Ethernet data. The time stamp records the arrival time of the packet at the
tracing apparatus. The 56 bytes of data are enough to hold the Ethernet header, the IP header,
and either a TCP header or a UDP header.† Figure 2.1 is a diagram of the protocol headers most
commonly found in the Internet.

(variable length)

(20 bytes)

IP HEADER

(20 / 8 bytes)

USER DATA

TCP / UDP HEADER

Figure 2.1. Internet Protocol Headers

Due to hardware limitations, the Bell Labs traces were not saved on tape. There was no
tape drive available on the Bell Labs tracing machine. In addition, the hardware clock used at
Bell Labs did not have a fine enough resolution to discern meaningful packet interarrival time
statistics. For these reasons, packet counts were immediately broken down during tracing by
application type and length. These statistics were written to disk and the raw trace data was dis-
carded. We use the limited Bell Labs statistics to help validate the measurements from the other
sites.
� ���������������������������
† We did not encounter any packets carrying IP or TCP options, and ignored packets containing IP
fragments. IP fragments accounted for only 0.02% of all IP packets at Berkeley, 0.05% at USC,
and 0.02% at Bellcore.
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56 Kb/s LINE

microVAX II

INTERNET

INTERNET
GATEWAY

ROUTER

HARDWARE
TRACING

INTERNET WIDE-AREA NETWORK

LOCAL NETWORKS
BELL LABS

CISCO

VAX 11/750

10 Mb/s ETHERNET

Figure 2.2. Sample Network Tracing Configuration

2.3.3. Tracing Instruments

The common approach to the four tracing efforts was to place a dedicated workstation-class
computer on the Ethernet cable that carried all traffic flowing through the wide-area network
routers at each site. For example, the tracing configuration used at Bell Labs is shown in Figure
2.2. The Ethernet controller for the tracing computer was placed in promiscuous mode, allowing
it to passively inspect all the traffic on that Ethernet without disturbing the network, routers, or
hosts.

There were two main goals when building our network tracing instruments:
� The traces should be complete, that is, they should contain every packet of interest. We

wanted to insure that the bandwidth provided by the measurement system was sufficient to
record all the incoming Ethernet packets, without dropping any packets. We found it effec-
tive to discard any unnecessary data from the Ethernet packet as soon as possible. Thus, we
retained protocol headers but threw away application-level data. This technique lowered
the required bandwidth to one that the 8-millimeter tape drives could maintain. Inciden-
tally, discarding application-level data helped to safeguard its privacy, a concern at every
measurement site.

� The traces should contain accurate and meaningful timestamps, that is, the time when pack-
ets arrive at the tracing instrument should be recorded promptly and with high resolution.
We found it useful to read and record timestamps as soon as possible after interrupts sig-
naled the arrival of an Ethernet packet at the tracing instrument. In addition, we added
non-standard microsecond-resolution timers to some of the measurement systems in order
to improve upon the millisecond-resolution timers originally provided with those systems.

Our tracing instruments met these goals with varying degrees of success, as described
below.



- 14 -

The Berkeley traces were gathered using a Sun 3/50 workstation configured with a LANCE
Ethernet controller, a SCSI disk drive, and a SCSI 8-millimeter tape drive. It was also equipped
with a microsecond-resolution timer board designed at Berkeley and connected through the
unused DES data encryption port [19]. The Ethernet driver in the SunOS kernel was modified to
manage a circular buffer big enough to hold 3,000 trace records. Immediately after an interrupt
was received signaling the arrival of an Ethernet packet, the system read the current value of the
timer, truncated the Ethernet packet to 56 bytes, and appended the timestamp and truncated
packet to the buffer. The resulting timestamp resolution was 10 microseconds. A dedicated
user-level program inspected the buffer and wrote new trace records to tape. No packet losses
due to buffer overflows occurred during the Berkeley measurements.

The USC data was collected using the NNStat program suite [9] on a Sun SparcServer
4/490. The NNStat package uses the standard SunOS timer, accessed through the gettimeofday()
system call [16], which on that system has a 20-millisecond resolution. During tracing similar to
that reported here, the loss rate was estimated by injecting a Poisson stream of short packets.
Only 0.6% of these packets were missing from the tape.

Bell Labs traffic was inspected with a DEC microVAX II configured with a DEQNA Ether-
net controller and the standard microVAX II disk. A new streams module was inserted in the
Ninth Edition Unix kernel between the standard Ethernet driver and user space. Using the stan-
dard system clock, it prepended a 10-millisecond-resolution timestamp to each incoming Ether-
net packet and forwarded the packet to user space. A user-level program read the time stamps
and Ethernet packet data, extracted the statistics of interest, and wrote them to a set of disk files.
No packet losses due to buffer overflows occurred during the Bell Labs measurements [11].

The Bellcore traces were collected with a Sun 3 workstation augmented with the following
VME bus peripherals: a single-board computer with a Motorola MC68030 processor and an on-
board LANCE Ethernet controller, an interval timer board with a 4-microsecond resolution,
several hard disk drives, and two 8-millimeter tape drives. A system of hierarchical buffers
stretching between the single-board computer and the tape drives carried the trace records to
tape. No packet losses occurred during the Bellcore measurements [63].

The hardware used to gather trace data was different at each site because the three measure-
ment sites were geographically and administratively disjoint. In addition to resulting in multiple
software development efforts to produce the tracing software, this heterogeneity made our
analysis more difficult. For example, the timestamps for Berkeley and Bellcore have
significantly different formats, as well as different resolutions. On the other hand, many impor-
tant similarities found among the various sets of data have served to validate the different meas-
urements.

2.3.4. Applicability of the Traces

The success of the Internet and its family of protocols suggests they will continue to be a
significant portion of the traditional data traffic carried by wide-area networks. Therefore, it is
important to characterize the traffic generated by applications that use IP and related Internet
protocols. We observed that more than 94% of wide-area Internet traffic is due to TCP and
UDP. Future networks will carry audio and video traffic with different characteristics from
current traffic. However, traditional forms of traffic will prevail for several years and will con-
tinue to be used for much longer.
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Given that traditional wide-area data traffic will be an important application of future net-
works, we believe our traces are representative of such traffic. A look at aggregate statistics for
the NSFnet backbone [70] lends weight to this claim. The breakdown of traffic in our traces
shows strong similarities to the breakdown of NSFnet backbone traffic during October, 1989,
when our Berkeley and Bellcore traces were gathered, and January, 1991, when our USC traces
were gathered.† Most importantly, the seven applications we identified as transmitting the most
packets also appear as such on the NSFnet backbone (these applications are TELNET, RLOGIN,
FTP, SMTP, NNTP, DOMAIN, and VMNET, as shown later in this chapter).

NSFnet statistics for the total packet activity generated by organizational subnetworks also
suggest that our traces are representative. Of 1,174 subnetworks for which backbone activity
was detected during October, 1989, Berkeley was the 3rd busiest and Bellcore was the 130th
busiest. Of 2,345 subnetworks measured during January 1991, USC was the 31st busiest. Thus,
our traces capture activity generated by a range of subnetworks, from a very active one like
Berkeley, to a moderately active one like USC, to a less active but non-trivial one like Bellcore.

The uniformity of our trace data further justifies its use as representative of wide-area Inter-
net traffic. Although our data comes from four different organizations and spans a period of one
year and a half, traffic from all four sites shares many characteristics. In particular, the distribu-
tions of number of bytes transferred, conversation durations, total packets per conversation, and
packet sizes are indistinguishable. Furthermore, these characteristics are shared by two different
days of Berkeley traces, and by a one-day trace and a three-day trace of Bellcore traffic.

For legibility, we present mainly data derived from the Berkeley traces in the body of this
dissertation. The Berkeley traces are arguably the best-quality traces in our set. They represent
the largest subnetwork studied, suffer from negligible packet losses, and contain very high-
resolution timestamps. For completeness, Appendix A contains representative traffic charac-
teristics comparing data from Berkeley, USC, and Bellcore. It shows that application-level
conversation characteristics are uniform across all our trace data.

2.4. Analysis Methodology

2.4.1. Data Reduction

We need to refine the raw trace data in order to isolate the behavior of individual traffic
endpoints. Types of endpoints include transport-level protocols, network applications, and
application-level conversations. We would like to maintain separate statistics for these different
endpoints, and not aggregate statistics for the all the traffic in the traces, in order to produce
traffic models with sufficient detail to drive meaningful simulations.

The volume of traffic flowing through a local-area to wide-area network junction in the
Internet is large. More specifically, the Bell Labs router sees approximately half a million pack-
ets a day, the Bellcore router sees approximately three quarters of a million packets a day, the
USC routers see approximately five million packets a day, and the Berkeley routers see more
than eight million packets a day. Capturing this traffic produces Gigabytes of data on a daily
basis, even when only packet headers and time stamps are retained. Managing this much data
presents a considerable challenge.
� ���������������������������
† Bell Labs network activity is not listed in the NSFnet statistics database.
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We have used a mixture of software tools in the Unix programming environment [56] to
meet this challenge. We wrote a collection of programs in various languages: the programming
language C; file and data manipulation languages such as the Bourne shell, awk, and make; and
the graph typesetting language grap [1] [2] [6][55]. These programs work together to reduce the
raw trace data into meaningful and manageable sets of traffic statistics.

2.4.2. Transport-Level Protocols

The first step in refining the data was to separate the different transport-level protocols that
use IP (Internet Protocol). We did this by inspecting the protocol type field in the IP header.
Based on this field, we gathered separate statistics for TCP (Transmission Control Protocol) and
UDP (User Datagram Protocol). Tables 2.1 and 2.2 show the number of packets and bytes attri-
buted to different transport-level protocols at each site.†

� ���������������������������������������������������������������������������������������������������������������������������������������������������������
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Table 2.1. Packet counts from each site
(These figures reflect all packets captured in the traces, including packets
carrying only acknowledgements and other protocol control information.)
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Table 2.2. Byte counts from each site
(These figures reflect only application-level data

bytes. They do not include protocol header bytes.)

2.4.3. Network Applications

The next step was to identify the different network applications responsible for wide-area
Internet traffic. The application defines the type of traffic, and is thus particularly important for
our study of multiplexing different traffic types at the entrance to a wide-area network. Network
applications were identified by a heuristic that inspects the source and destination port numbers" "�"�"�"�"�"�"�"�"�"�"�"�"�"
† Byte counts for protocols other than TCP and UDP are not available.
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found in TCP and UDP headers and records the smaller of the two. This heuristic relies on the
convention that major Internet applications rendezvous with their clients by means of well-
known port numbers, which are typically the smaller of the two port numbers used in a conver-
sation. Major TCP network applications include FTP (File Transfer Protocol), NNTP (Network
News Transfer Protocol), SMTP (Simple Mail Transfer Protocol), TELNET and RLOGIN (both
remote terminal protocols). Major UDP network applications include DOMAIN (name service)
and ROUTE (routing service).

Table 2.3 is a breakdown by application of the TCP traffic at Berkeley, USC, and
Bellcore.† It shows the percentages of bytes, packets, and conversations attributed to each appli-
cation, except when percentages are zero or near zero, in which case they are represented by a
dash. The acronyms for these applications are expanded in Appendix C. Two related studies,
one at University College London [18] and the other at Lawrence Berkeley Laboratory [81], as
well as statistics from the NSFnet national backbone [70], identify a similar application break-
down in their wide-area TCP traffic.

# #�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#
% Packets % Bytes % Conversations$ $�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$Application

UCB USC BCR UCB USC BCR UCB USC BCR% %�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%% %�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%
TELNET 28.0 16.6 36.3 5.5 2.3 6.5 4.1 8.7 8.7

RLOGIN 15.5 5.8 18.5 2.8 0.7 3.1 2.1 2.7 4.3

FTP 12.0 5.0 18.7 36.2 10.6 54.9 2.8 3.2 4.8

NNTP 11.6 36.3 9.2 15.8 44.5 15.6 0.4 1.6 0.8

SMTP 11.6 3.1 12.6 11.0 1.9 10.6 69.6 52.3 68.0

FINGER 1.1 0.4 0.5 0.6 0.2 0.2 18.3 17.8 7.6

RCP 0.2 3.6 1.4 0.4 12.5 4.3 0.2 0.2 0.7

UUCP 0.2 0.1 0.8 0.4 0.1 1.3 0.3 1.1 2.2

X11 0.2 5.0 0.4 0.2 2.5 0.1 — 0.5 0.4

VMNET 10.0 9.1 — 25.4 20.7 — 0.1 3.3 —

DOMAIN 0.1 0.1 — — 0.2 — 0.2 3.3 0.1

IRCD 4.6 — — 1.3 — — 0.6 0.2 —

DC 10 — 3.5 — — 0.8 — — 1.5 —
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Table 2.3. Breakdown of wide-area TCP traffic by application
(See Appendix C for a glossary of acronyms and abbreviations.)

2.4.4. Application-Level Conversations

The final data reduction step was to sort the overall packet stream into application-level
conversations. This step is more involved than the ones discussed so far because it cannot be
performed by independently inspecting each packet. We must detect the beginning of an
application-level conversation, record all subsequent packets for that conversation in a separate
set of statistics, and detect the end of a the conversation.( (�(�(�(�(�(�(�(�(�(�(�(�(�(
† An equivalent traffic breakdown by application is not available for Bell Labs.
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2.4.4.1. Separating Conversations

We wrote a traffic pattern analyzer to produce histograms of per-conversation characteris-
tics. We define a conversation to be a stream of packets traveling between the end points of an
association, delimited by silences of at least twenty minutes. An association is in turn defined as
a tuple of the form { application, source host, source port, destination host, destination port }.
We explain these tuple components below.

The analyzer separates conversations in three steps. First, it identifies the application
responsible for the conversation via the heuristic described earlier. Second, it identifies hosts by
inspecting the source and destination addresses in the IP headers. Each host on the Internet is
uniquely identified by a 32-bit address. The network uses these host addresses to route IP pack-
ets from their source to their destination. Third, the analyzer looks at the source and destination
port numbers found in TCP and UDP headers. These port numbers are the same numbers used
above for differentiating applications, but in this case we kept both numbers instead of distilling
the well-known one into the name of an application. The combination of source and destination
host addresses together with source and destination port numbers uniquely identify a pair of
processes communicating over the Internet. A hashing scheme based on these tuples served to
index the statistics for each conversation.

2.4.4.2. Using the Packet Train Model

Our use of silence periods to delimit conversations follows the common packet-train model
of network traffic [43] [49]. This model has recently been used in place of earlier Markov
models of data traffic [38] [42]. In the packet-train model, a stream of packets is broken up into
trains. Two consecutive trains are delimited by a maximum allowable inter-car gap (MAIG).
The MAIG is usually chosen to encompass 90 percent of all packet interarrival gaps. Different
researchers have used different MAIGs, ranging from 500 milliseconds to 50 seconds, depend-
ing on the network measured. In our case, conversations are analogous to trains delimited by
twenty-minute gaps. We chose this period because it is longer than FTP’s idle-connection
timeout value of fifteen minutes. Early on we experimented with a five-minute silence rule. The
difference in results was minimal.

For several reasons, we decided to define our conversations in terms of packet trains and
not in terms of the more obvious transport-level protocol connections. Network applications use
transport-level protocols such as TCP to carry data over the network. The endpoints of these
protocols exchange explicit control messages to establish and tear down transport-level connec-
tions. We could have detected these messages and used them to determine the beginning and
end of a conversation. However, when modeling traffic sources for the purpose of network
design, it is the active periods that matter. For example, the fact that a transport-level protocol
connection for a remote terminal session is open for 8 hours is irrelevant if the session is inac-
tive and produces no network traffic for 7 of those 8 hours. We are most interested in what hap-
pens when traffic is actually flowing between application-level endpoints. We are also interested
in the lengths of idle periods, but it is not necessary to consider those periods as part of a conver-
sation.

2.4.4.3. Grouping Multiple Transport-Level Connections

Another reason for ignoring transport-level connections is that in many cases an application
uses multiple connections within one logical session. We would like our conversation statistics
to capture the behavior of these logical sessions regardless of how many transport-level
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connections are used. Below we outline those cases in which our traffic analyzer groups multi-
ple transport-level connections into one application-level conversation.

FTP conversations can subsume multiple TCP connections. Each FTP session initiates one
FTP-control and zero or more FTP-data connections, corresponding to the zero or more files
transferred during the session. We clumped these TCP connections into one conversation. We
also clumped back-to-back and concurrent FTP sessions between the same host pair. Similarly,
for NNTP, we clumped back-to-back and concurrent TCP connections between the same host
pair.

However, while FTP always uses a control connection to send control packets and a
separate data connection for each file transferred, NNTP sometimes uses the same connection for
both handshaking and transferring multiple news articles. NNTP sets up a new connection for
each article sent to the initiator of the conversation, but does not do so for each article sent in the
other direction. Since we wanted the distribution of the number of articles sent per NNTP
conversation and also the distribution of article sizes, we needed to distinguish articles from
handshake traffic and also articles from each other. From the NNTP documentation and by sam-
pling articles posted to the Internet, we observed that articles have a minimum size of 250 bytes.
Since NNTP tries to send articles using the largest allowable packet size, we used the 250-byte
minimum size to detect the start of an article transfer. We further noticed that for a given burst
of large-sized packets, the last one of the burst usually has its TCP push flag set, while those in
the middle of the burst do not.† Thus, we used the first packet with its push flag set to mark the
end of an article. Packets smaller than 250 bytes between the end of an article and the beginning
of the next article we considered handshake packets.

Our decision to group multiple transport-level connections into one conversation affects
some of the traffic characteristics that we present later in this chapter, but it does not invalidate
our results. In particular, our measured distributions of the number of packets and bytes per bulk
transfer conversation are skewed towards bigger conversations, because some of our conversa-
tions include the packets and bytes of several transport-level connections. In spite of this bias
towards larger conversations, we report conversation sizes that are much smaller than what has
been traditionally assumed. Therefore, our claims regarding conversation sizes are conservative
rather than excessive.

2.4.4.4. Ignoring Transport-Level Protocol Details

Since we want to model the characteristics of application-level traffic in general, indepen-
dent of transport-level protocols like TCP, we further decided to drop all TCP-specific traffic.
We dropped TCP connection establishment packets and all zero-byte packets, assuming that
these were acknowledgement packets. We also filtered out all retransmitted packets.
Retransmitted packets were detected by matching their sequence numbers against those of the
last 128 packets from the same conversation. Most retransmitted packets match one recently
transmitted within the previous 64 packets. The oldest retransmitted packet detected in the
traces was 104 packet-sequence numbers in the past. Since we threw away retransmissions, we
also threw away most of the TCP keep-alive packets, which share a single sequence number.‡) )�)�)�)�)�)�)�)�)�)�)�)�)�)
† The push flag is a control bit in TCP headers often used to delimit application-level data units.
‡ Keep-alive packets are used by TCP implementations to signal that a connection, although idle,
should remain open.
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This also meant that we would occasionally interpret a single keep-alive packet as a full-fledged
conversation, albeit one that transfers only one packet. We filtered out all such false conversa-
tions in our analysis.

For the Bellcore trace, we further noticed that 50% of all NNTP conversations between
Bellcore and Rutgers University consisted of a single 6-data-byte packet. After closer examina-
tion, we attributed those conversations to an implementation fault at either Bellcore or Rutgers.
Our traffic pattern analyzer filtered out all such conversations.

In the next section we present the measured probability distributions produced by our traffic
pattern analyzer. For all the reasons just described, we believe these per-conversation statistics
capture those characteristics relevant to the study of traffic multiplexing at the entrance to a
wide-area network.

2.5. Conversation Characteristics

We now detail properties of network conversations from the five applications responsible
for 78% of wide-area TCP packets, 71% of wide-area TCP bytes, and 79% of wide-area TCP
conversations: FTP, NNTP, SMTP, TELNET, and RLOGIN. The observations below are
presented under five general categories: ratio of bulk to interactive traffic, characteristics of
traffic from bulk transfer applications, characteristics of traffic from interactive applications, and
direction of traffic flow.

2.5.1. Ratio of Bulk to Interactive Traffic

For lack of a more accurate workload model, previous wide-area network studies that simu-
late flow control, congestion control, multiple access protocols, and traffic dynamics in general
have been forced to assume a rather simple traffic model [25] [32] [99] [100] [101] [102]. These
studies use either exclusively bulk transfers or an arbitrary mix of bulk and interactive traffic.
The percentage of packets attributed to interactive applications typically range from 0 to 20%.

We find that TCP traffic consists of bulk and interactive traffic, as commonly assumed. In
particular, the top five applications cleanly break down into the two categories. FTP, NNTP, and
SMTP are bulk transfer applications. They send a number of data items as quickly as possible.
For FTP these items are files, for NNTP they are news articles, and for SMTP they are mail mes-
sages. The data has been prepared previously and people are not directly involved in the data
transfer. In contrast, TELNET and RLOGIN are interactive applications. A person directly gen-
erates data for at least one side of a conversation, typically keystrokes that form commands for a
remote computer.

However, our measurements do not agree with common assumptions regarding the ratio of
bulk to interactive traffic. Although bulk applications send more data than interactive ones,
Table 2.3 shows that interactive conversations send 25 to 45% of wide-area Internet packets and
5 to 10% of wide-area Internet bytes. We note that an earlier study [69] also found that interac-
tive traffic accounted for roughly 40% of the bytes in their local-area network.

We think it is important to realize that interactive applications are responsible for 25 to
45% of all network packets. Simulations that model internetwork traffic as mostly large bulk
transfers may overestimate the benefit of mechanisms proposed to improve bulk transfer perfor-
mance.
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2.5.2. Bulk Transfer Applications

2.5.2.1. Abundance of Small Transfers

Many simulation studies commonly overestimate the amount of data sent by bulk transfer
applications such as FTP. Simulated transfer sizes usually range from 80 Kilobytes to 2 Mega-
bytes, or the transfer simply lasts until the end of the simulation run [25] [32] [99] [101] [102].
In contrast, Figure 2.3 shows that 60 to 90% of bulk transfer conversations involve less than 10
Kilobytes. Our data also shows that the few conversations that transfer more than one Megabyte
of data are responsible for 40 to 50% of all bytes transferred. However, as explained previously,
bulk transfer conversations often transfer more than one data item per conversation. Individual
items larger than one Megabyte make up only 15 to 20% of all bytes transferred.
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Figure 2.3. Bytes per conversation of bulk transfer applications

Our findings again agree with an earlier local-area network measurement study [69] that
found a mean file transfer size of only 20 Kilobytes. These statistics also agree with observa-
tions made in file system studies [5] [78] that most files are small, but that a few large files
account for a disproportionate amount of file space.

If small transfers are representative of Internet traffic, they should be taken into account in
wide-area network simulations. To the extent that simulated algorithms employ feedback
mechanisms, such as many used for congestion and flow control [47] [59] [83], it is important to
know that in many conversations the data transfer may complete before any such feedback is
received. The ineffectiveness of feedback will become increasingly acute as networks become
faster.
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2.5.2.2. Pauses Between Small Transfers

Bulk transfer applications wait at least one network round-trip time between the transfer of
two data items. The pause is due to an exchange of application-level control information, or
handshake, between the endpoints of a conversation. Bulk applications like NNTP, which
appear to exchange large amounts of data, thus make hundreds of small exchanges separated by
at least one round-trip time. Wide-area network simulations should take into account these
pauses in data transmission during bulk transfers.

2.5.2.3. Dependence on Network Conditions

We have noted the abundance of small ‘bulk’ transfers due to the small sizes of files, news
articles, and mail messages handled by the respective applications. The sizes of these transfers
thus reflect true application-level behavior that should be included in traffic models.
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Figure 2.4. Packet interarrival times of bulk transfer applications

However, many other characteristics of bulk transfer conversations do not reflect
application-level behavior, but instead depend on prevailing network conditions. For example,
the packet interarrival times of bulk transfer conversations are to a great extent determined by
the line speed and degree of congestion of a network. This dependence is apparent in Figure 2.4,
where the minimum interarrival time for FTP (approximately 3 milliseconds) is equal to the quo-
tient of the dominant packet size for FTP (512 bytes in Figure 2.5) and the line speed of the
Internet backbone during our measurements (1.5 Megabit/second). The abundance of interar-
rivals times near the minimum corresponds to the arrival of back-to-back packets and
exemplifies classic packet train behavior. This behavior follows from the attempt by bulk
transfer applications to send data items as fast as the internetwork allows.
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Figure 2.5. Packet lengths of bulk transfer applications

In addition, packet size characteristics themselves are a function of the maximum packet
size allowed by a network, or its Maximum Transfer Unit (MTU). This dependence is apparent
in Figure 2.5, where the dominant FTP packet size (512 bytes) is equal to the historical MTU of
the Internet (also 512 bytes).

Therefore, many of the statistics presented here should not be relied on to model bulk
transfer applications. Workload models should be network-independent in order to be widely
useful. We address this issue further when we describe our simulation workload model in
Chapter 3.

2.5.3. Interactive Applications

2.5.3.1. Independence from Network Conditions

Interactive applications are much less affected by network conditions than bulk transfer
applications. For example, the packet sizes and interarrival times of interactive conversations
are not tied to the line speed. Figures 2.6 and 2.7 show that more than 80% of TELNET and
RLOGIN packets carry less than 10 bytes of data and have interarrival times greater than 100
milliseconds, respectively. These numbers are not limited by either the line speed or the MTU
of the Internet at the time of our measurements. These measured characteristics thus reflect the
true nature of those applications. We are free to use them to form a network-independent model
of interactive conversations. We derive such a model for simulation purposes in Chapter 3.
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2.5.3.2. Abundance of Short Conversations

In most traffic models used by previous simulations, interactive conversations are assumed
to last 500 seconds, 600 seconds, or simply for the remainder of the simulation [25] [32] [67]
[99] [102]. In reality, interactive conversations are much shorter. Figure 2.8 shows that 50% of
TELNET and RLOGIN conversations last 200 seconds or less. These short conversations
correspond to short periods of activity in what may be much longer but often inactive idle ses-
sions. Granted, our definition of a conversation (active periods delimited by long silences)
biases our observed conversation lifetimes. However, we feel our definition captures the most
important aspects of traffic behavior (active periods as opposed to idle periods). Models of
interactive traffic should reproduce this abundance of short conversations.
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Figure 2.8. Seconds per conversation of interactive applications

Regarding the amount of data transferred during these short conversations, Figures 2.9 and
2.10 show that more than 80% of TELNET and RLOGIN conversations involve less than 1,000
packets and 10 Kilobytes, respectively. However, we should not assume that interactive conver-
sations are responsible for less network data than bulk transfer conversations − a comparison of
Figures 2.3 and 2.9 shows that 80% of all interactive conversations send as much data as the
average bulk transfer conversation. Rather, we should keep in mind that bulk transfer applica-
tions send less data than is often assumed.

2.5.3.3. Absence of Packet Trains

Our data also shows that while interarrival times for bulk transfers exhibit packet-train
behavior, including many back-to-back packets, interarrival times for interactive applications do
not. They should be modeled by the distribution shown in Figure 2.10.
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Figure 2.9. Packets per conversation of interactive applications
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2.5.4. Direction of Traffic Flow

Many wide-area network simulations have assumed unidirectional data flow within bulk
transfer conversations (bulk transfer data flowing in one direction with no data flowing back) and
symmetrically bidirectional data flow within interactive conversations (interactive keystrokes
flowing in one direction with matching echoes flowing back) [25] [32] [101]. In contrast, we
find that many bulk transfer conversations are bidirectional and many interactive conversations
are asymmetric. Simulated traffic sources should reproduce these characteristics.
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Figure 2.11. Direction of traffic flow

We define a conversation’s directionality ratio as the ratio of the number of application-
level bytes flowing in the conversation’s primary direction to the number of application-level
bytes flowing in the reverse direction. The primary direction is simply that in which the most
bytes are transmitted. Figure 2.11 shows the distribution of directionality ratios for FTP and
TELNET conversations.

We find that 36% of FTP conversations exhibit less than a 10:1 directionality ratio. The
percentage of NNTP and SMTP conversations for which this ratio holds is even higher. Thus,
bulk transfer conversations are not symmetric, but there is a significant amount of reverse-
flowing data. On the other hand, we find that 67% of TELNET conversations exhibit more than
a 10:1 directionality ratio. The percentage of RLOGIN conversations for which this ratio holds
is approximately the same. Thus, interactive conversations are not as asymmetric as bulk
transfer conversations, but there is significantly more data flowing in one direction than in the
other.

In support of the relatively low directionality ratios in bulk transfer conversations, our
traces show that these conversations contain a request-response phase during which no data
flows in either direction. In turn, this phase causes classic packet train behavior: a small
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handshake followed by a big burst. For example, FTP performs a control handshake before
every file transfer. NNTP sends a query, waits for a response, and then transfers a news article,
and similarly for SMTP and electronic mail messages. Thus, even when data bytes flow in only
one direction, application-level control bytes flow in both directions. We again draw a parallel
with an earlier local-area network study [69] that found file transfer conversations to have a
directionality ratio between 2:1 and 5:1. This request-response behavior may influence conges-
tion and flow control algorithms and should be included in simulation studies of these algo-
rithms.

The relatively high directionality ratio in interactive conversations is explained by the con-
trast between the person and the computer at either end of a conversation. During an interactive
session, a person typically generates single keystrokes and short commands at one end of the
conversation. However, a computer at the other end often generates long replies to these com-
mands, for example the contents of a file to be displayed on a screen. The result is a much larger
number of bytes flowing from the computer to the person than from the person to the computer.

Small packets, short conversations, and bidirectional flow all contribute to the traffic
dynamics of an internetwork. These characteristics of current traffic could affect previous stu-
dies of traffic segregation and oscillation [32] [58] [99] [102].

2.6. Conclusions

We have analyzed wide-area traffic traces from four different organizational subnetworks
on the Internet. We have isolated the stream of traffic flowing between two application
processes and termed this a conversation. Conversations fall into two categories, bulk transfer
and interactive, according to which network application generates data for transmission. Bulk
transfers are those generated by FTP (file transfers), SMTP (electronic mail), and NNTP (net-
work news). Interactive conversations are those generated by TELNET and RLOGIN (both
remote terminal applications).

We have identified conversation characteristics that contradict the following commonly
held beliefs regarding wide-area traffic:* Bulk sources transfer large amounts of data per conversation.+ Bulk sources transmit a uniform stream of large packets in only one direction., Bulk transfers account for 80 to 100% of the traffic. Interactive applications account for

20% or less.- Interactive sources send small packets in one direction, and receive echoes of comparable
size in the opposite direction.

In contrast, we have found that:. Bulk transfer sources such as FTP transfer less than 10 Kilobytes during 75% of their
conversations. Other bulk traffic sources, such as SMTP and NNTP, transfer even smaller
amounts of data per conversation (see Figure 2.3)./ Bulk transfers follow a cycle composed of a control handshake followed by a data transfer,
and they generate bidirectional traffic (see Figure 2.11).0 SMTP and NNTP send as many small packets as large packets (see Figure 2.5).1 Interactive applications account for 40% of wide-area traffic (see Table 2.3).
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2 Interactive applications routinely generate 10 times more data in one direction than the
other, using packet sizes ranging from the minimum to the maximum packet size permitted
on the network (see Figures 2.6 and 2.11).

These are important contradictions that may affect results of previous studies of network
performance. These studies should be redone to verify that their results are insensitive to the
inaccuracies in the original models. Certainly, the new findings should be incorporated in future
traffic models to insure realistic results.

Another important observation is that the network behavior of a mature application is
stable. The five applications responsible for most wide-area data traffic, FTP, NNTP, SMTP,
TELNET, and RLOGIN, have remained largely unchanged for many years. Our analysis shows
that the traffic generated by these applications can be described by certain application-specific
characteristics that did not vary over the geographic sites sampled and did not change over eigh-
teen months of measurements (see Appendix A). These characteristics are also independent of
other factors such as day of the week and time of day. Such stability allows us to characterize
individual conversations for each major application and confidently apply the results to a wide
range of network conditions.

The next chapter describes a new wide-area internetwork simulator that directly samples
our measured conversation characteristics to generate application traffic.
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3. Network Simulation

3.1. Introduction

Computer simulation is a valuable tool for evaluating the performance of communication
networks. It has several advantages over the alternatives, namely analysis and experimentation.
Mathematical, statistical, and queueing analysis are useful and elegant approaches to many prob-
lems. However, they often force oversimplification in order to keep solutions tractable. The
other alternative, experimentation with a real network, yields the most realistic results of all
three techniques. However, high-speed wide-area networks are very expensive to build and
operate. In addition, once built, networks are not always flexible enough to allow experimenta-
tion with the design parameters of interest.

A simulator has some of the advantages of each approach while avoiding most of their
disadvantages. It can incorporate compact analytical models of network components. Simula-
tion results using these models can be validated against closed-form analytical solutions. How-
ever, where an analytical model loses accuracy due to oversimplification, a simulator can substi-
tute software models with arbitrary levels of detail. Thus, a simulator can accurately mimic real
hardware. However, where a real network is built with expensive and inflexible hardware com-
ponents, a simulator is a piece of easily modified software.

One disadvantage of simulations is that they are difficult to validate. A concise analysis
can be carefully checked by a number of people, especially if it is published. In contrast, a simu-
lator typically contains thousands of lines of code that cannot be rigorously checked or effec-
tively published. As described in Chapter 4, we address this problem by comparing the results
of simulations to known results and by continually inspecting debugging output from the simula-
tor.

Another disadvantage of simulations is that they are compute-intensive. During a simula-
tion study of high-speed wide-area networks, performing meaningful experiments on available
hardware in reasonable amounts of time is a substantial challenge. A related problem is the
large number of simulation runs necessary to explore the parameter space. As described in
Chapter 4, we overcome these challenges by choosing a small number of relevant simulation
scenarios, by scaling the problem description, and by running simulations in parallel on a net-
work of workstations.

This chapter presents VCSIM (Virtual Circuit Simulator), a new wide-area internetwork
simulator. We developed VCSIM to study traffic multiplexing at the entrance to a wide-area
network. As shown in Figure 3.1, VCSIM simulates four network components: hosts, routers,
switches, and links. It reads parameter settings from an input file that describes the network to
be simulated. Source hosts send packets destined for the sink hosts along local-area links to the
nearest router. Input routers at the edge of the wide-area network forward these packets to a
wide-area virtual circuit. They fragment packets into the cells used by the wide-area portion of
the network. Switches forward the cells along the path to the output router. The output router
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reassembles the original packet from the component cells and forwards it to the sink host. The
sink hosts send response and acknowledgment packets along the reverse path. At the end of a
simulation run, VCSIM reports performance metrics of interest.

ROUTER SWITCH ..
.

HOSTS

ROUTER

LINK

...

HOSTS
Figure 3.1. Simulator components

VCSIM is a discrete event simulator, that is, one that changes state only at discrete points
in simulated time. It is derived from NETSIM [51], a simulator for wide-area ATM networks.
In addition to functionality borrowed from NETSIM, VCSIM allows dynamic virtual circuit
establishment and teardown, many-to-one mapping of application conversations to network vir-
tual circuits, multiple queueing disciplines, and variable-sized cells. It is written in C++ [91], an
object-oriented programming language evolved from C [55]. VCSIM is based on the C++ task
library [92]. Tasks are co-routines, or concurrent subprograms with their own locus of control
and private data. The library is geared for use in discrete-event simulation. It includes support
for creating, scheduling, and deleting tasks, a general queue mechanism for synchronization and
message-passing, and routines for managing a simulated clock. Tasks can communicate through
message passing and shared memory.

The rest of this chapter describes VCSIM in more detail. Section 3.2 references previous
work in wide-area network simulation. Section 3.3 describes the workload model we use to
drive VCSIM. Our workload model is derived from the traffic characterization presented in the
previous chapter. Section 3.4 presents the network model used by our simulator, that is, how
VCSIM simulates network components such as hosts, routers, switches, and communication
lines. Section 3.5 explains the input parameter choices available when using VCSIM, and Sec-
tion 3.6 describes the output of VCSIM.

3.2. Previous Work

Researchers have developed many general-purpose simulation packages. An example is
RESQ [85], by Sauer, MacNair, and Kurose, a simulator based largely on queueing theoretic
models. It includes models and solutions for standard queueing systems, such as M/M/1, that
can be combined to model more complex systems. Another example is CSIM [89], by Schwet-
man, a library of C routines. It includes support for co-routines, generators of standard probabil-
ity distributions, and routines for managing a simulated clock. These packages can be used to
study wide-area network behavior, as Verma did with CSIM [97], but they are also applicable to
many other performance evaluation problems.

Other researchers have developed more specialized simulators. NEST, by Bacon, Dupuy,
Schwartz, and Yemini [27], is tailored to communication networks. REAL, by Keshav [57], is



- 32 -

built upon NEST and simulates TCP-IP wide-area networks. It emphasizes simulation of
congestion control algorithms and has been used for that purpose in several studies [25] [58].
Similar network simulators have been used in studies by Ramakrishnan and Jain [83] and Zhang
[101]. As mentioned earlier, we derived our simulator from NETSIM, by Kalmanek and Mor-
gan [51]. NETSIM is an ATM wide-area network simulator that has also been used to study
congestion control [40].

We chose to build a largely new simulator instead of using an existing one for three main
reasons. First, to our knowledge, no existing simulator was well-suited to the problem of multi-
plexing datagrams over virtual circuits. VCSIM provides functionality that is key to our study
and could not be found in other simulators. Second, we wanted to understand every aspect of a
tool that was central to our study. It is difficult to achieve the same degree of familiarity with
software written by someone else, perhaps software for which only binaries are available. Third,
we wanted to keep the simulator small. Small often translates to fast in this type of system, and
simulation speed was a concern from the beginning. We wanted to explore the implications of
small cells on network performance, and simulating a cell-based network entails processing
many more events than simulating a packet-based network. By including in VCSIM only func-
tionality that was relevant to our study, we created a small and efficient simulator.

3.3. Workload Model

3.3.1. Motivation and Goals

An accurate workload model is an important component of any simulation study. A
network’s workload is its traffic. Thus, network simulations need a good model of traffic
because network performance is critically dependent on the input traffic mix. We used the
traffic characteristics presented in the previous chapter to derive a model of application-level
conversations for each of the major types of wide-area traffic, namely FTP, NNTP, SMTP, TEL-
NET, and RLOGIN. In a previous study, we laid the foundations for the workload model
described here [21].

There were three main goals when building our model:3 The model should be realistic. It should accurately reproduce the measured traffic charac-
teristics, not rely on intuitive ideas of how traffic behaves.4 The model should be efficient. It should be fast and compact so that it can drive simula-
tions of large high-speed networks without consuming inordinate amounts of computing
resources.5 The model should be network-independent. In other words, it should be applicable to a
large variety of network simulation scenarios and not be limited to the measured network
conditions.

3.3.2. Achieving Realism and Efficiency

Here we address the first two modeling goals: realism and efficiency. We need to faithfully
reproduce the characteristics of real traffic in a way that is suitable for detailed computer simula-
tions of high-speed networks.

We reproduce our measured probability distributions with the inverse transform method
[50]. In general, the inverse transform method maps uniformly distributed 0-1 random variables
from the ordinate of a cumulative distribution onto its abscissa. If a distribution obeys a known
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analytical expression such as y = f(x), the inverse transform method simply inverts the function f,
where y ranges between 0 and 1 and x ranges through the domain of the random variable of
interest.
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Figure 3.2. The inverse transform method of generating traffic characteristics

Figure 3.2 shows an example of how this process generates measured traffic characteristics.
It graphs the cumulative distribution of packet interarrival times for TELNET conversations
from our Berkeley trace (see Chapter 2). First, we sample the ordinate with a random number
between 0 and 1 (0.82 in Figure 3.2). Then, we use the corresponding point on the abscissa (840
milliseconds in Figure 3.2) as the next packet interarrival time to use for simulation. A simula-
tion run takes many such samples, generating random numbers throughout the 0-1 range and
thus producing application data lengths with the desired probability distribution.

Since we do not have analytical expressions but measured data points, we invert a piece-
wise linear representation of the distributions. We build a histogram of the measured points,
sum the histogram bin heights, and divide each by the total number of measured points to create
a cumulative histogram with values between 0 and 1 (we saw many of these cumulative histo-
grams in Chapter 2). We store each measured cumulative histogram in a two-dimensional
software array. The first dimension, x, holds measured values. The second dimension, y, holds
the corresponding probability values between 0 and 1. To generate a random variable, we first
generate a 0-1 uniform random number r. We then perform a binary search on the second
dimension of the array until we find the two y values between which r falls. Finally, we interpo-
late between the corresponding two x values to determine our random variate.

Rather than using a raw histogram, another way to implement the inverse transform method
would be to sort the measured data points and keep only every 100th or 1,000th point. These
measured values could be placed in a one-dimensional array indexed by 100 or 1,000 values
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between 0 and 1. To generate a random variate, the array could be indexed directly by a 0-1 ran-
dom number r, thus eliminating the binary search of the previous discussion. This alternative
approach is compact and efficient, but it loses information. We chose the raw histogram
approach because it automatically adapts to the amount of information in the measured data.
The number of bins in one of our raw histograms is proportional to the number of distinct values
measured for a given traffic characteristic. The same is not true of a static scheme with 100 or
1,000 array elements.

Furthermore, we found the binary search on the raw histograms to have good performance.
Measurements of running times show that VCSIM spends less than 0.02% of its time generating
traffic characteristics. For example, on a SPARCstation 2 computer, a call to the routines that
implement our traffic models takes an average of 90 microseconds. On the same computer, a
sample simulation run that makes 6,049 calls to these routines takes 49 minutes of wallclock
time. Thus, the latency introduced into the simulation process by our implementation of the
inverse transform method is negligible.

There remain some concerns regarding the accuracy of the inverse transform method. In
particular, the method ignores correlations in the measured data by sampling the data with a
sequence of statistically independent random numbers. For example, if we were to use the pro-
cedure described above to directly reproduce our measured packet interarrival time distribution
for bulk transfer applications, we would not capture the packet train behavior of bulk transfer
traffic noted in Chapter 2. We in fact incorporate important correlations in our workload model
by using detailed knowledge of application program behavior and using only a subset of our
measured probability distributions. For example, our model reproduces the tendency of bulk
transfer packets to arrive back-to-back by ignoring the packet interarrival time distribution for
bulk transfer applications. Instead, our model sends packets as fast as the simulated internet-
work allows. The following section describes other instances of this technique. The only addi-
tional inaccuracies introduced by our use of the inverse transform method stem from quantiza-
tion errors incurred while building histograms and interpolating between histogram bins. As
mentioned above, we have used enough histogram bins to make these errors negligible.

In short, the inverse transform method faithfully reproduces the measured traffic charac-
teristics. Furthermore, it results in compact array representations of these characteristics, and it
can quickly generate these characteristics through binary search. This approach thus meets our
realism and efficiency goals.

3.3.3. Achieving Network-Independence

Our third modeling goal is network-independence. An empirical traffic model should not
be restricted to the network conditions prevalent during the measurements it is based on, for
example, the state of the Internet at noon on October 31, 1989. It should be applicable to the
simulation of faster and slower networks, more and less heavily-loaded networks, larger and
smaller networks, and so on.

We are armed with a wide array of measured traffic characteristics, as shown in Chapter 2,
and a method to faithfully and efficiently reproduce them for simulation, as described in the pre-
vious section. However, we are not free to use all these characteristics in our models because
many of them are network-dependent. For example, as we discussed in Chapter 2, packet
interarrival times for bulk transfer applications depend on network speed, network congestion,
and other factors. Similarly, packet sizes for bulk transfer applications reflect the maximum
transmission unit of the network carrying the traffic. We would like our models to capture
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application-specific behavior that applies to all networks carrying that type of application traffic.

Our approach is to discard network-dependent traffic characteristics and incorporate in our
models only network-independent characteristics. The next two sections explain how we sample
a subset of our measured probability distributions to model individual conversations of two gen-
eral categories of wide-area traffic: bulk transfers and interactive sessions. The relevant traffic
characteristics are reproduced by a library of software routines that implement the inverse
transform method and can be linked with any network simulator [20].

In contrast to our success in modeling characteristics of individual conversations, we were
unable to derive a network-independent model of conversation arrivals. Our measured traffic
data shows that conversation interarrival times depend on geographical site, day of the week,
time of day, and other factors. Thus, we were forced to leave the choice of a conversation
interarrival distribution to the user of VCSIM. For this purpose, we provide generators of stan-
dard probability distributions. The available distributions include constant and exponential
(more can easily be added). Fortunately, the lack of an empirical model for this aspect of the
workload does not hinder our study of multiplexing traffic at the entrance to a wide-area net-
work. We can learn much about the performance and resource consumption of a network with a
simple model of conversation arrivals, as described in Chapter 4.

3.3.4. Bulk Transfer Model

We model conversations for the three dominant bulk transfer applications of wide-area net-
works: FTP (file transfers), NNTP (network news), and SMTP (electronic mail). These applica-
tions are concerned mostly with throughput, not delay, and they share many important
behavioral characteristics. More specifically, they have a set of data items to send across the
network as quickly as possible. For FTP these data items are files, for NNTP they are news arti-
cles, and for SMTP they are mail messages.

Figure 3.3 contains pseudo-code for our model of bulk transfer conversations. The model
has two parts, source and destination. The source model represents the side of the conversation
that originates the bulk transfer conversation and sends data items. The destination model
represents the other side; it receives the bulk data. In our pseudo-code, to generate means to
sample the corresponding probability distribution for the appropriate application type, using the
inverse transform method as described above.

For example, in the case of an FTP conversation, the source model first uses the inverse
transform method to sample the cumulative distribution of the number of files sent during FTP
conversations. After thus selecting the number of files to be sent by the current simulated FTP
conversation, the model goes into a loop that iterates over each of those files. For each file, it
samples the distribution of the size of FTP handshake packets, sends a packet of that size, and
waits for a response from the destination. This handshake mimics the exchange of control infor-
mation carried out before the transfer of every data item by FTP and the other bulk transfer
applications, as noted in Chapter 2.

Once the handshake is complete, the model generates the number of bytes in the current
file. These bytes are partitioned into packets all having the maximum size allowed by the simu-
lated internetwork (except for the last packet, which may be smaller). The data packets are then
sent to the destination as fast as the simulated internetwork allows. For example, if the network
uses 1.5 Megabit/second links, that is the maximum rate at which data leaves a host. Similarly,
if the hosts use TCP as its transport protocol, then TCP’s window flow control mechanism
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Figure 3.3. Model of a bulk transfer conversation

dictates how many packets can be outstanding between source and destination. Actions below
the application level, such as packet acknowledgements and retransmissions, are not the respon-
sibility of the workload model and are also handled according to the protocols being simulated.

The model for the destination end is simpler. The destination waits for a handshake packet
from the source and responds without delay. It first generates the size of the response packet by
using the inverse transform method, as usual. It then sends the response packet, completing the
handshake and allowing the source to send the packets making up a data item. Finally, it sinks
all data packets and goes back to waiting for new handshake packets.

Our bulk transfer model achieves network-independence by letting the simulated network
dictate much of the behavior of bulk transfer conversations. The handshake process takes at
least one round-trip time in the network of interest, as it should. For instance, it takes very little
time over a state-wide network and considerably longer over a country-wide network. Similarly,
packet sizes depend on the network being simulated. In addition, the rate of packet transmission
depends on link speed, degree of congestion, flow and congestion control algorithms, and other
characteristics of the simulated network. As we noted in Chapter 2, a good workload model
should account for the relationship between the characteristics of bulk transfer traffic and the
characteristics of the network carrying the traffic.

3.3.5. Interactive Session Model

We model conversations for the two dominant interactive applications of wide-area net-
works, TELNET and RLOGIN (both remote terminal applications). Interactive traffic is not as
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affected by network conditions as bulk transfer traffic, as we saw in Chapter 2. Interactive
packet lengths and interarrival times reflect application behavior, not factors such as a network’s
maximum transmission unit or speed. Therefore, when building our interactive session model,
we are free to use some of the measured probability distributions that we did not use for the bulk
transfer model.

Figure 3.4 contains pseudo-code for our model of interactive conversations. The model has
again two parts, source and destination. The source is the side of the interactive conversation
where a person is directly producing data, for example by entering keystrokes that make up com-
mands for a remote computer. The destination is the side where a computer receives and
responds to data from the source, for example by executing commands and sending back the
results. Again, the word generate means to sample a probability distribution using the inverse
transform method.
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Figure 3.4. Model of interactive conversations

The source model first generates the duration of the new conversation in milliseconds.
Then, while simulated time has not reached the conversation expiration time, the model sends
and receives packets. For each source packet, it generates the next packet interarrival time,
waits for the interarrival interval to pass, and sends the packet. These packets have the
minimum length supported by the simulated network, since they predominantly carry single
keystrokes or short command strings.

The model for the destination end always waits for a packet from the source and replies
without delay. It first generates the size of the reply. This response could be a simple echo of
the source data, or a larger reply from the execution of a command. Finally, it sends the reply in
the same way our bulk transfer model sends a data item. That is, it fragments the reply into
maximum-sized packets and sends these packets as fast as the simulated internetwork allows.
For instance, if the reply is a simple keystroke echo, a single small packet flows back to the
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source. On the other hand, if the reply contains a large file to be displayed on the remote user’s
terminal, it will be sent as a stream of packets subject to link speed, congestion, and other simu-
lated network factors.

As we saw in Chapter 2, TELNET and RLOGIN have similar enough characteristics that
we can use a single set of measured probability distributions to represent both applications. We
chose to use the TELNET characteristics to model a composite TELNET/RLOGIN traffic type.

3.3.6. Miscellaneous Conversation Model

VCSIM models one additional category of network traffic, miscellaneous (MISC). A mis-
cellaneous source generates traffic according to standard probability distributions. The user
specifies the distributions for conversation length in packets, packet interarrival time in seconds,
and packet length in bytes. The available distributions are the same as for conversation interar-
rivals, namely constant and exponential (more can easily be added).

The MISC traffic model can simulate traffic types not represented by FTP, NNTP, SMTP,
or TELNET/RLOGIN. An example is a malicious traffic source that floods the network with
back-to-back maximum-size packets without obeying any flow control or congestion control
scheme. Such traffic types are useful in studying the robustness of network control algorithms
under atypical operating conditions.

Thus, VCSIM can use any mix of FTP, NNTP, SMTP, TELNET/RLOGIN, and MISC
models to drive a simulation. The following section describes how VCSIM simulates the net-
work components that carry the traffic generated by our workload model.

3.4. Network Model

3.4.1. Overview

VCSIM is made up of functional modules that represent wide-area internetwork com-
ponents such as hosts, routers, switches, and links. Each module is implemented as a set of C++
tasks that work together to simulate the behavior of a network component. VCSIM simulates
network activity at the level of individual packets and cells. Packets flow between hosts and
routers in the local-area part of the simulated internetwork, while cells flow between routers and
switches, and between switches, in the wide-area part of the network. Communication between
modules, as well as between tasks within a module, takes place through queues of packets and
cells. The simulator keeps track of every packet and cell on the network, and advances simu-
lated time whenever a packet or cell incurs transmission delay or speed-of-light propagation
delay while going over a communication line.

Figure 3.5 shows a sample internetwork built using these simulation modules. The rest of
this section describes these modules in more detail.

3.4.2. Hosts

Hosts are sources and sinks of simulated packets. A source host generates traffic for one
application-level conversation at a time, according to the workload model described earlier in
this chapter. Thus, there are five types of sources: FTP, NNTP, SMTP, TELNET/RLOGIN, and
MISC. The control actions specified by the Transmission Control Protocol (TCP) [15] are super-
imposed on the traffic generated by the conversation models.
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Figure 3.5. Sample VCSIM network configuration

In particular, VCSIM sources reproduce TCP’s ordered, reliable data delivery and its slid-
ing window flow control mechanism. Sequence numbers are assigned to packets in the order the
packets are generated. These numbers serve to guarantee that packets are delivered in order at
the destination, and allow the destination to individually acknowledge the receipt of each packet.
Any packet sent but not yet acknowledged is considered outstanding. If a packet is outstanding
longer than a certain interval proportional to a dynamically estimated round-trip time, the source
considers the packet lost and retransmits it.

The window mechanism insures that at most one window size worth of data is outstanding
between source and the destination. It can be used for flow control to prevent the source from
sending more packets than the destination can handle. It can also be used for congestion control
to prevent overloading the network as a whole. VCSIM implements the dominant variant of this
mechanism, namely the slow-start congestion control scheme [47]. It can also simulate a simple
fixed-window version [15].

Sink hosts simulate the destination ends of application-level conversations according to the
workload model described earlier in this chapter. They accept packets from the network and
reply with acknowledgments. Replies larger than a minimum-length packet sometimes accom-
pany these acknowledgements, as dictated by the traffic destination models described earlier.
Sinks also manage the destination end of the TCP sliding window. The window mechanism
keeps track of the sequence numbers in incoming packets and acknowledges those packets that
arrive in sequence. The source uses these acknowledgments to adjust its window and to
retransmit packets when necessary.

3.4.3. Routers

Routers are a key network component in our study of multiplexing traffic at the entrance to
a wide-area network. They are responsible for interleaving multiple application-level traffic
streams from the local-area portion of the network and scheduling them onto the shared link to
the wide-area portion of the network. Input routers accept packets from source hosts, fragment
them into cells, and send the cells on a virtual circuit to an output router. Output routers take
cells from a virtual circuit, reassemble them into the original packet, and deliver it to a sink host.

Routers offer four other major services: they establish virtual circuits, they tear down vir-
tual circuits, they map application-level datagram streams to wide-area virtual circuits, and they
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service queues of packets and cells. Each of these services is controlled by a simulation parame-
ter that can be configured to a range of values. We describe the available values and their effect
below.

Virtual circuits can be permanent or dynamic. Permanent virtual circuits are pre-
established to all destinations at the beginning of the simulation. They are never torn down.
Dynamic virtual circuits are established when data arrives for a destination to which no appropri-
ate virtual circuit yet exists. Dynamic virtual circuits are torn down if they have been idle longer
than a timeout interval. Timeout intervals can be set to any value with the granularity of the
underlying simulation clock.

The mapping scheme can be one of three: one virtual circuit per application-level conversa-
tion, one virtual circuit per destination router, and one virtual circuit per type of traffic flowing to
each destination router. The queueing disciplines available are first-in first-out (FIFO) and round
robin (RR), both among conversations sharing a virtual circuits and among virtual circuits shar-
ing a communication link. Other priority-based disciplines like shortest-packet-first were con-
sidered but discarded because, in their simplest form, they can alter the order of conversation-
level data. Wide-area networks should avoid delivering out-of-order data because this can
trigger costly reordering procedures in transport-level protocols. The reordering problem can be
avoided by treating data for the same conversation as a special case, but only at the cost of the
simplicity provided by FIFO and RR. Simplicity is important to allow efficient hardware imple-
mentations of network control algorithms.

Figure 3.6 is an internal representation of a VCSIM router. Packets arrive on a local-area
link from a host on the left of the figure, and cells leave on a wide-area link to a switch on the
right. Packets carry an application-level conversation identifier and a traffic type identifier (one
of FTP, NNTP, SMTP, TELNET, or MISC). Packets arriving on the local-area link are placed
on a packet queue associated with each conversation. They are also assigned a virtual circuit
(VC) according to the conversation-to-VC mapping scheme in use. Associated with this virtual
circuit is a cell queue. Packet queues are serviced in the order dictated by the packet queueing
discipline and fragmented into cells. These cells are then placed on the appropriate cell queue.
Finally, cell queues are serviced in the order dictated by the cell queueing discipline.

We now examine the effects on router behavior of different conversation-to-VC mapping
schemes. Assume the network topology shown in Figure 3.5, where there is only one input
router and one output router. Further assume that all necessary virtual circuits are already esta-
blished. To see what happens in one extreme, when the mapping calls for one VC per conversa-
tion, consider the lower half of Figure 3.6. Packets from a TELNET conversation arrive and are
placed in the packet queue for that conversation. That conversation is assigned its own VC, and
therefore its own cell queue. To see what happens in the other extreme, when the mapping calls
for one VC per destination router, consider the upper half of Figure 3.6. Packets from two FTP
conversations arrive and are placed in the packet queue for each conversation. In this case,
however, both conversations are assigned the same virtual circuit since they flow through the
same destination router. These conversations thus share a single cell queue.

To see what happens in the intermediate case, when the mapping calls for one VC per
traffic type per destination router, consider all of Figure 3.6 as a whole. Two FTP conversations
and one TELNET conversation are flowing through the router. As always, each conversation
has its own packet queue. In this case, however, the two FTP conversations share one VC and
thus one cell queue, while the TELNET conversation is assigned its own VC and cell queue.
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Figure 3.6. Simulation model of a router

Queue handling also has important effects on the behavior of the router. Recall that packet
and cell queueing disciplines can be either FIFO or RR. A set of queues serviced in FIFO order
effectively collapse into a single queue. For example, if the packet queueing discipline for the
router in Figure 3.6 is set to FIFO, then packets from the two FTP queues are removed in the
order they arrive and the two FTP packet queues behave as one. In contrast, if RR is used, then
packets from the two FTP queues are interleaved. First a packet from the first queue is removed,
then a packet from the second queue, and so on. Naturally, the round-robin is performed only on
non-empty queues.

Another aspect of queue handling is the time at which queues are serviced. In VCSIM, the
set of cell queues is always serviced whenever the wide-area link is free for another transmission
and there are any cells to transmit. The timing for servicing packet queues is more complicated.
VCSIM can be configured to perform window-based flow control on the virtual circuits esta-
blished between routers. This network-level flow control mechanism operates in the routers in
conjunction with the transport-level flow control operating in the hosts. When network-level
flow control is in use, VCSIM routers will service a packet queue only when the corresponding
virtual circuit has an open transmission window. That is, it will dequeue a packet, fragment it
into cells, and queue the cells only when transmitting those cells will not violate flow control for
the corresponding virtual circuit. On the other hand, when network-level flow control is not
used, routers service packet queues as soon as data appears in them. In this simpler case, packet
queues are always empty and cell queue handling dominates router behavior.

3.4.4. Switches

Switches perform a routing function internal to the wide-area portion of the internetwork.
They accept cells from an incoming link and transfer them to the appropriate outgoing link based
on the virtual circuit identifier carried by the cell. Associated with each virtual circuit using an
outgoing link is a queue of cells. Switches perform cell-by-cell round-robin among the virtual
circuit queues. That is, the set of cell queues for an outgoing link is serviced by a round-robin
discipline whenever the link is free for transmission and there are any cells to transmit. We
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recall that cells are the smallest unit of data handled by the network, and the only unit of data
handled by the switches. When these conditions hold, round-robin has been proven to be fair
under high load, while first-in first-out disciplines are not [39] [76]. For this reason, round-robin
is the only queueing discipline provided by VCSIM switches. Switches can have any number of
ingoing and outgoing links, allowing the wide-area portion of the simulated network to take an
arbitrary graph topology.

3.4.5. Links

Links simulate communication lines. They connect two nodes of any type (host, router, or
switch) and introduce transmission and propagation delay. Transmission delay is the quotient of
the length of the packet or cell being transmitted and the speed of the link. Propagation delay is
the quotient of the length of the link and the speed of light in the medium. The passage of a
packet or cell through a link thus causes simulated time to advance. The only other direct causes
of delay in VCSIM are the waits in traffic sources for the next conversation or packet interarrival
interval to complete. Delays indirectly incurred by packets and cells, such as waiting for pro-
cessing in a queue while other packets or cells are transmitted, do not explicitly advance simu-
lated time.

HOST HOST

SINKSOURCE

FTPFTP

ROUTER SWITCH ROUTER

LINK

Figure 3.7. Minimum VCSIM network configuration

3.5. Input to VCSIM

The behavior of VCSIM is controlled by a specification file containing parameter settings
in the form of name-value pairs [7]. Figure 3.8 is a sample specification file. It describes the
network in Figure 3.7, with two hosts, two routers, one switch, and four links. Related parame-
ters are grouped into blocks, for instance the block delimited by router and router_end.
Parameters have default values, so that a partial specification file constitutes legal input. Simi-
larly, the value of a parameter carries through from one block to the next block of the same type,
so that we need only reset parameters that we want to change. Characters on a line after // are
considered comments and ignored by the simulator.

3.5.1. Global Parameters

Global parameters apply to the overall simulation. ticks_per_sec scales the resolu-
tion of the underlying simulation clock. It specifies how many clock ticks constitute one second
of simulated time. bytes_per_cell sets the amount of data carried by each fixed-size cell
in the wide-area portion of the network. max_pkt_size defines the MTU of the network.
The seed block contains seeds for the random number generator that controls all stochastic
processes in VCSIM. VCSIM uses a composite congruential-Tausworth generator [68] that
requires two odd integer seeds.

The timer block specifies a set of global timers in units of simulated seconds. log
controls when statistics gathering begins. If can be set to a value greater than zero to postpone
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// MINIMUM CONFIGURATION link

link_id 1
// global parameters connects 1 3 // node ids

speed 1.5e6 // bits/second
ticks_per_sec 100000 delay 0.0225 // seconds

link_end
bytes_per_cell 48

link
max_pkt_size 512 link_id 2

connects 3 2
seed delay 0.0

3091 4917 // odds link_end
seed_end

host
timer // seconds host_id 10

log 0.0 function source
checkpoint 0.0 traffic_type ftp
regeneration 175.0 flow_control slow_start
end 180.0 window_limit 128 // packets

timer_end retransmit 1 // boolean
host_end

// network components
host

router host_id 110
router_id 1 function receiver
vc_map per_conversation host_end
packet_queue fifo
cell_queue round_robin link
buffer_policy infinite link_id 10
dynamic_vc 0 // boolean connects 10 1
idle_time 0.090 // seconds link_end
meter_time 0.100 // seconds

router_end link
link_id 110

router connects 2 110
router_id 2 link_end
report 0 // boolean

router_end // conversation routes

switch route
switch_id 3 10 1 3 2 110 // node ids

switch_end route_end
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Figure 3.8. VCSIM specification file for the network in Figure 3.7
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statistics gathering until initial transients have passed. checkpoint specifies how often
statistics are reported. It allows measurements of network behavior over time. regenera-
tion specifies when to begin looking for a regeneration point, that is, a point at which the simu-
lation is quiescent. The simulation terminates after end simulated seconds whether or not a
regeneration point has been reached.

3.5.2. Component Parameters

The bulk of the specification file selects parameters for each components of the simulated
network. Components can be nodes or links, where nodes are either hosts, routers, or switches.
Many parameters for these components are closely related to the workload and network models
described earlier in this chapter. An identifier parameter, for example router_id, is com-
mon to all components. We ignore identifier parameters in the discussion below.

3.5.2.1. Router Parameters

The first three router parameters, vc_map, packet_queue, and cell_queue,
specify the conversation to virtual circuit mapping scheme, the packet queueing discipline, and
the cell queueing discipline, respectively. Three other important router parameters follow. First,
buffer_policy controls how buffers are allocated to active conversations and virtual cir-
cuits. This parameter can be set to either infinite, when packet and cell queues are allowed
to grow without bound, or statistical, when a finite buffer pool is statistically multiplexed
among the active conversations and virtual circuits. Second, dynamic_vc selects whether
virtual circuits are dynamic or permanent. Third, in the case of dynamic virtual circuits,
idle_time decides how long before an idle circuit is torn down.

The remaining two router parameters control statistics gathering and reporting.
meter_time controls how often to sample certain fine-grained router behavior such as queue
lengths. It is a separate timer to insure the samples are not inadvertently synchronized with other
aspects of the simulation such as protocol timers, which would create sampling problems.
report controls the verbosity of a router. When set to 0, it inhibits statistics reporting.

3.5.2.2. Host Parameters

Hosts have one of two functions, source or sink, and one of five traffic types, ftp,
nntp, smtp, telnet, and misc. Sources run one of two variants of transport-level win-
dow flow control, slow_start or fixed_window. The next two parameters control
aspects of this flow control. window_limit sets an upper limit to the size of the transmis-
sion window, and retransmit specifies whether the source will retransmit packets it deems
lost.

3.5.2.3. Switch and Link Parameters

Switch and link parameter blocks are simpler. Switches operate inside the wide-area net-
work, while we are mainly concerned with multiplexing traffic at the entrance to a wide-area
network. We use switches for their basic function of routing cell traffic from link to link. For
this reason, we have no need to change switch configuration between simulations. Link behavior
is completely specified by three parameters: which two nodes the link connects, how fast the link
is in bits per second, and how many seconds of propagation delay it introduces.
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Starting simulation

Timeout reached
Simulated 180.000 seconds
Measured last 180.000 seconds

ROUTER 1 - PER CONVERSATION VCs - FIFO PACKETS - RR CELLS

Sum of queue lengths (bytes)
1799 samples Min: 0.000 Max: 432.000
Mean: 102.857 Std: 141.412 95%ile: 419.191

Packet delays through router (seconds)
34709 samples Min: 0.000 Max: 0.003
Mean: 0.003 Std: 0.000 95%ile: 0.003

Packet throughput (packets/second) 192.828
Cell throughput (cells/second) 2059.194
Bit throughput (bits/second) 790730.667
Packets dropped due to buffer overflow (number) 0
Packets dropped due to virtual circuit timeout (number) 0
Utilization of switch link (fraction) 0.485

HOST 10 - FTP

Round trip packet delays (seconds)
34692 samples Min: 0.047 Max: 0.054
Mean: 0.054 Std: 0.001 95%ile: 0.056

Packet throughput (packets/second) 174.970
Bit throughput (bits/second) 716657.292
Packets retransmitted (number) 17

Ending simulation
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Figure 3.9. VCSIM output for the simulation specified in Figure 3.8

3.5.2.4. Other Parameters

The final parameter block specifies a static route through the network in the form of node
identifiers. The route must contain a source host, an input router, at least one switch, an output
router, and a sink host, in that order. All data from the specified source host follows this route to
the specified destination host.

A number of simulation parameters are absent from Figure 3.8. If they are relevant,
VCSIM will use their default settings. Alternatively, we could explicitly choose their values by
adding name-value pairs to the specification file. Examples of absent host parameters are
conv_arr_dist, conv_arr_mean, and conv_arr_std. They specify one of several
conversation interarrival time probability distributions, the mean of the distribution, and its stan-
dard deviation, respectively. Choices of probability distributions include constant and
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geometric, that is, discrete exponential.

Examples of absent router parameters are flow_control, default_window, and
maximum_window. They configure the network-level flow control mechanism that regulates
the transmission of cells in the virtual circuits between routers. The default is not to use
network-level flow control.

3.6. Output of VCSIM

Figure 3.9 is the output of the simulation specified by the input file in Figure 3.8. It reports
the behavior of the simulated network as seen by the single input router and the single source
host. Some statistics, such as packet delays, are sampled throughout the simulation in the form
of histograms. They are reported in terms of the mean, standard deviation, and other important
values of the histogram. Other statistics, such as link utilization, are gathered only at each
checkpoint or at the end of the simulation. They are reported as mean or total values up to that
point.

For example, the FTP source achieved a throughput of 716,657 bits per second and
observed a mean round-trip packet delay of 54 milliseconds. Similarly, on the average, the
traffic consumed 102 bytes of queue space in the router, and the link between the input router
and switch was busy 48.5% of the time.

We can extract statistics from VCSIM output and display them graphically, as we will see
in Chapter 4.

3.7. Conclusions

We have described VCSIM, a discrete-event simulator of wide-area internetworks. VCSIM
includes detailed models of network components such as hosts, routers, switches, and links. Of
particular importance to our study of traffic multiplexing are hosts and routers. Hosts are
sources and sinks of traffic. Routers mix traffic from different sources at the entrance to a wide-
area network. VCSIM reports network performance as seen by the hosts and resource consump-
tion as seen by the router.

The major research contribution of VCSIM is its workload model. VCSIM includes traffic
models for individual conversations of each major type of traffic found in the wide-area portion
of the Internet: FTP, NNTP, SMTP, TELNET, and RLOGIN. These models reproduce the
traffic characteristics presented in Chapter 2 by using the inverse transform method to generate
measured probability distributions. Our new workload model is network-independent, realistic,
and efficient, and is applicable to a wide range of research problems.

We applied VCSIM to the problem of multiplexing application datagram streams at the
entrance to virtual circuit networks. The next chapter describes our simulation study and
presents our results.
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4. Multiplexing Policies

4.1. Introduction

We now return to the problem of multiplexing datagram traffic over virtual circuit net-
works, previously introduced in Chapter 1. Datagrams arrive at the entrance to a wide-area net-
work and must find a virtual circuit to go on. Routers assign datagrams to virtual circuits, and
choose the order in which to transmit datagrams over the wide-area portion of the network. We
aim to answer two questions:I How should a router map a set of application-level datagram streams, or conversations, to

a possibly smaller set of wide-area virtual circuits?J What queueing discipline should the router use for multiplexing datagrams onto these vir-
tual circuits?

The criteria for deciding how to answer these questions, previously defined in Chapter 1,
are threefold:K The network should give good performance to each conversation.L The network should be fair to each conversation.M The network should make efficient use of its resources.

The type of application responsible for each datagram stream is central to the multiplexing
problem. Conversations are of different types, corresponding to different applications such as
remote terminal sessions and remote file transfers. Each type offers a different workload to the
network and demands different performance from the network. For example, traffic from termi-
nal sessions is composed mostly of small packets and is more sensitive to delay than to
throughput. In contrast, file transfer traffic is composed mostly of large packets and is more sen-
sitive to throughput. If these two traffic types are indiscriminately mixed at the entrance to a
wide-area network, a small remote terminal packet may be queued behind a number of large file
transfer packets and may thus unfairly incur long delays. These problems suggest that networks
should separate traffic streams.

In this chapter, we use simulation to investigate the benefits and drawbacks of separating
traffic streams to varying degrees. In one extreme, each conversation maps to its own VC and
the virtual circuits are served in a round-robin basis. This scheme cleanly separates traffic types
as well as conversations. Similar schemes have been used in virtual circuit-based networks like
Datakit [33]. In the other extreme, all conversations flowing between a source and destination
router share a common VC, and all traffic is served in a first-in first-out basis. This scheme does
not differentiate between traffic types or conversations. It has been used in datagram-based net-
works like NSFnet [82]. An intermediate approach is to assign all conversations of the same
type flowing between a pair of routers to one virtual circuit for that type. This scheme separates
traffic types but not conversations of the same type. It is motivated by shortcomings of the other
two schemes and by trends in future networks, as explained in Chapter 1. Together with first-in
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first-out and round-robin queueing disciplines, these are the multiplexing choices provided by
VCSIM, as described in Chapter 3.

We evaluate these schemes using two measures. One is performance as seen by network
applications, in terms of throughput and delay. Throughput and delay also show how fairly the
network allocates resources among conversations. The second measure is resource consumption
as seen by the network provider, in terms of bandwidth and buffer space. We expect that estab-
lishing more VCs may offer better performance than sharing fewer VCs. On the other hand,
sharing fewer VCs may use less memory than establishing more VCs. We use VCSIM to test
this hypothesis and quantify the tradeoffs between performance, fairness, and resource consump-
tion.

We find that networks should separate traffic types but not individual conversations of the
same type. They should establish one virtual circuit per type of traffic flowing between two net-
work points of presence, namely, between two routers. They should not establish one virtual cir-
cuit per conversation or one virtual circuit per pair of routers. In addition, networks should use
round-robin scheduling among the virtual circuits sharing a communication link, not first-in
first-out scheduling.

In a congested network, this multiplexing policy exhibits good performance and consumes
moderate amounts of resources at the expense of some fairness among traffic sources of the same
type. It maintains interactive delay near the possible minimum (a constant equal to one network
round-trip time) and bulk transfer throughput near the possible maximum (a fair share of the net-
work bandwidth) even as network load increases beyond saturation. Furthermore, it results in
bottleneck buffer consumption that rises by only one network round-trip window with each bulk
transfer conversation added to the offered load. Other multiplexing policies exhibit interactive
delay that increases with offered load and buffer consumption that rises as a multiple of the
offered load.

The following section surveys previous work in this area. The rest of the chapter presents
our simulation study in more detail. Section 4.3 describes our simulation methodology while
Section 4.4 presents our simulation results.

4.2. Previous Work

All networks multiplex traffic at various points throughout their fabric. Multiplexing poli-
cies and mechanisms acting at these points affect all aspects of network behavior. As a result,
they have received attention since the outset of computer networking. Seminal work on many
aspects of traffic multiplexing is covered in textbooks by Kleinrock [60] [62], Schwartz [88],
Tanenbaum [93], and others.

There is also a wealth of more recent multiplexing studies. Examples are those by Feld-
meier [29] and Tennenhouse [94], which discuss where in the protocol stack it is best to multi-
plex traffic. They conclude that multiplexing of traffic streams from different applications
should be restricted to the network level. Our multiplexing schemes act in the network level at
the entrance to wide-area networks, and therefore follow their guidelines.

In the interests of relevance, we limit the rest of our survey to work that, like ours, treats the
benefits and drawbacks of separating traffic streams to various degrees. In a virtual circuit set-
ting, Fraser, Morgan, and Lo [34] [76] [75], and Hahne [39], investigated the performance of
various queueing disciplines when exposed to a mixture of traffic types They found that round-
robin disciplines are fair under high load, while first-in first-out disciplines are not. Their results
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agree with those of Katevenis [53], Nagle [77], and Demers, Keshav, and Shenker [25], who
reached similar conclusions for datagram networks. We based on these results our hypothesis
that providing round-robin service among traffic types would achieve fairness across traffic types

All these studies were based on either analysis, simulation, or a combination of the two. In
a more experimental vein involving the transmission of IP datagrams over X.25 virtual circuits,
we found that it was necessary to open more than one virtual circuit to the same destination in
order to improve both throughput and delay [10]. The throughput provided by a single virtual
circuit was much lower than the available bandwidth due to the inadequate window sizes pro-
vided by public X.25 wide-area networks. Comer and Korb [14] noted the same throughput lim-
itation. In addition, we observed high delays with a single virtual circuit even in situations were
the window size was not a limiting factor. This experience helped motivate our proposal for
establishing more than one virtual circuit to each destination, namely one virtual circuit per
traffic type.

Our work adds to the existing body of traffic multiplexing results in two main ways. First,
our methodology combines experimental and simulation techniques. We drive our simulations
with traffic models derived directly from extensive measurements of real networks. Second, we
present a new aspect of multiplexing policies, namely their effect on consumption of buffer
memory. We show how establishing one virtual circuit per traffic type can meet performance
goals with significantly less memory than establishing one virtual circuit per conversation.

4.3. Simulation Methodology

There are four methodology issues to address before we can attack the multiplexing prob-
lem with simulation:N What simulation configurations are appropriate?O Do the simulations provide accurate results?P Can we run meaningful simulations on available computing resources?Q Can we reproduce previous simulation conditions when necessary?

This section describes how we addressed these issues.

4.3.1. Network Configuration

We configured VCSIM to simulate a network like the one in Figure 4.1. This network has
a number of source hosts of various types, corresponding sink hosts, an input router, an output
router, a switch, and the necessary links.

This standard configuration stresses the multiplexing problem at the input router. As a
result of the parameter choices described below, the input router and its wide-area link constitute
the only bottlenecks in the network. Any overload, and thus any queueing, will occur at these
points. This configuration allows us to isolate the problem and study the effects of various input
parameters on the output metrics of interest.

4.3.1.1. Input Parameters

We vary the following input parameters between simulation runs: the number and types of
hosts sending and receiving traffic, the conversation-to-virtual circuit mapping scheme in the
routers, and the packet and cell queueing disciplines in the routers. Host types can be any of
FTP, NNTP, SMTP, and TELNET. Mapping schemes can be one virtual circuit per
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Figure 4.1. Standard VCSIM multiplexing configuration

conversation, one virtual circuit per traffic type, and one virtual circuit per router pair. The latter
always translates to a single virtual circuit in our standard configuration. Queueing disciplines
can be either FIFO or RR.

As described in Chapter 3, these are not the only parameters accepted by VCSIM, but we
maintain most other parameters constant to keep the simulation study tractable. In general, our
input parameter values follow the example shown in Figure 3.8. Later in this chapter, we
explore the sensitivity of our results to variations in some of these parameters, in particular link
speed and the limit on transport-level window sizes. We describe our specific parameter choices
below.

All links are 1.5 Megabit/second, a relatively low but realistic speed. We match all link
speeds so as not to limit how much a single host can load the network. Rather than using futuris-
tic link speeds of 600 Megabit/second or higher, we scale our simulation experiments to 1.5
Megabit/second to keep computation requirements down. In addition, all links have zero delay,
with one exception. The link between the input router and the switch has a 22.5 millisecond
delay, which simulates a U.S. cross-country network with a 45-millisecond round-trip delay.

In the hosts, we use a limit of 128 outstanding packets on transport-level flow control win-
dows. This limit is higher than the number of maximum-length packets that fit in a network
round-trip window. This choice insures that hosts are not window-limited, that is, that hosts can
transmit packets as fast as the internetwork allows without being unnecessarily throttled by
transport-level flow control.

Again in the hosts, we use the default conversation interarrival distribution, namely a con-
stant distribution of value zero. As a result, a source begins a new conversation as soon as the
previous one ends. In combination with our choice of permanent virtual circuits, this interarrival
distribution allows us to concentrate on network response to activity within conversations.
There are no idle periods between conversations, no virtual circuit teardowns due to timeouts,
and no virtual circuit establishment delays.

We also use default values for the parameters controlling network-level flow control in the
routers. These parameters specify that there be no flow control acting on the virtual circuits
between routers. Under these conditions, routers transfer data from their packet queues to their
cell queues as soon as data appears. As a result, packet queues are always empty, which renders
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moot the choice of packet queueing discipline.

Finally, we configure the routers to have infinite buffer space. Packet and cell queues are
thus allowed to grow without bound and consequently routers never drop data. Similarly, by
default, VCSIM switches never drop cells. Wide-area networks avoid dropping data because the
losses trigger retransmissions in the transport-level protocols running in the hosts. Retransmis-
sions in turn lead these protocols to slow the rate at which they send packets, which results in
lower throughput for the hosts. As this process acts on all traffic sources experiencing data loss,
network utilization may decrease even as offered load increases. Networks that avoid these
resource inefficiencies are considered stable. Naturally, we cannot build real networks with
infinite buffers. However, simulating this scenario lets us measure how much memory would be
needed in order not to drop data. Knowledge of this upper bound on memory sizes is very useful
for wide-area network design.

4.3.1.2. Output Metrics

We keep track of the following output metrics: the throughput and delay obtained by the
hosts, the buffer consumption inside the input router, and the utilization of the link connecting
the input router to the switch. Host throughput and delay measure the performance obtained by
network applications. A comparison of the performance obtained by individual conversations
also measures fairness. Buffer consumption at the bottleneck router is an important measure of
resource consumption in the network. Finally, bottleneck link utilization measures the overall
load on the network. In high-load conditions, bottleneck link utilization also measures how
efficiently the network is using the available bandwidth.

4.3.2. Accuracy

It is important to verify that our simulation results are accurate. We discuss two aspects of
this process: validation, lengths of simulation runs, and confidence intervals.

4.3.2.1. Validation

We validated VCSIM by comparing simulation output to expected results. We first did this
for simple deterministic cases where the expected output could be calculated from the input
through arithmetic. We also ran restricted stochastic examples where the output could be com-
pared to results predicted by statistical analysis. VCSIM passed all these tests. Finally,
throughout our study, we continually checked detailed debugging output from VCSIM to
confirm that it behaved as intended.

4.3.2.2. Lengths of Simulation Runs

In general, simulation results should reflect a system’s steady-state behavior, not initial
transients. We need to verify that our simulation runs are long enough to allow the network to
reach a steady state. We arrived at an appropriate run length by plotting output metrics over
time for very long runs of representative simulation experiments, and determining when initial
transients ceased. We learned that our simulation scenario reaches steady state after approxi-
mately 1,000 round-trip times. All simulation experiments reported in this dissertation ran for
4,000 round-trip times.

A related issue is that of regeneration points. A simulation that has become temporarily
quiescent is said to have reached a regeneration point. In our case, a regeneration point is
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reached when all queues in our simulated network are empty. In essence, a simulation begins
anew after a regeneration point, and therefore is again subject to initial transients. We instructed
VCSIM to stop simulating if a regeneration point was reached to avoid incorporating initial tran-
sients in our results. All simulation runs reported here ran without reaching a regeneration point.

4.3.2.3. Confidence Intervals

We also need to bound the variations intrinsic to stochastic simulation. A simulator like
VCSIM generates many events based on a random number generator. Consequently, simulation
results are in general not deterministic. Rather, they fall into a statistical distribution. A single
simulation run produces only one sample from this distribution. The sample may come from the
tail of the distribution and thus be unrepresentative of network behavior. We must gain
confidence that we have statistically meaningful samples.

For this purpose we evaluated confidence intervals [30]. Assuming a set of results obeys a
normal distribution, the central limit theorem states that 95% of values fall within one standard
deviation from the mean. Similarly, 99% of values fall within two standard deviations of the
mean. These two ranges are known as the 95% and 99% confidence intervals, respectively. For
each multiplexing scenario of interest, we ran a number of simulations with identical inputs
except for the seeds to VCSIM’s random number generator. We then calculated the mean and
standard deviation for the set of results to obtain the desired confidence intervals. Typically, we
simulated each scenario with 10 or 20 different seeds and verified that the results we report lie
within the 95% confidence intervals.

All simulation results reported in this dissertation were verified through this procedure. For
readability, we present only the means of the samples. However, in all cases we evaluated
confidence intervals to insure our results lie near the true mean of their distribution. Inciden-
tally, this process increased by an order of magnitude the number of simulation runs and there-
fore the amount of computing resources needed to produce our results.

4.3.3. Parallel Simulations

Computer simulation of cell-based wide-area networks entails large amounts of computa-
tion, even after scaling our link speeds to the relatively slow 1.5 Megabit/second. For example,
simulating 180 seconds of network activity (approximately 4,000 round-trip times) in a multi-
plexing scenario with one source and one sink on a Sun Microsystems SPARCstation 2 computer
takes approximately 2,000 seconds of wallclock time. Computation time increases with more
complicated configurations. For example, simulating 180 seconds in a multiplexing scenario
with five sources and five sinks on the same computer takes approximately 3,500 seconds of
wallclock time. We ran many hundreds of such simulations.

We met the demand for processing power by running simulations in parallel on a network
of workstations. Given a uniform processor architecture and file system name space, the Unix
pmake utility executes jobs on idle workstations.† When told how many workstations it may
use, pmake launches that many jobs in parallel, one per workstation. When one job terminates,
it reuses the free workstation for another job as long as jobs remain.

R R�R�R�R�R�R�R�R�R�R�R�R�R�R
† The pmake utility was originally developed for the Sprite operating system [79].
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Our simulations are well-suited to this environment. An important consequence of our
effort to keep VCSIM small is that its binary and run-time image fit easily into the main memory
of our workstations. There was no need to page portions of VCSIM to secondary storage. In
addition, each simulation run is self-contained: the VCSIM binary loads, it reads a small input
file, computes until the simulation terminates, and finally writes a small output file. There is no
communication between simulation runs.

Because of the low input and ouput activity, especially to and from any shared storage
servers on the workstation network, we achieved high parallelism. We typically ran late at night
on 25 to 30 SPARCstations. For example, we ran a suite of 150 multiplexing experiments in just
over 6 hours of wallclock time. If the experiments had been executed serially, the same suite
would have consumed more than 100 hours of wallclock time.

4.3.4. Provenances

Simulation experiments should be reproducible in case we need to revisit an earlier experi-
ment to explore some aspect in more detail. With VCSIM, the combination of an output file and
the corresponding input file uniquely identify a simulation run. In our study, we saved both files
to provide our results with the necessary provenances [7]. Incidentally, this ability to exactly
reproduce previous conditions is another advantage of simulation over experiments with a real
network.

4.4. Simulation Results

We are now ready to evaluate different traffic multiplexing policies through simulation. As
described in the previous section, we use VCSIM in our standard multiplexing configuration.
We vary the number and types of hosts along with the multiplexing policies at the input router,
and track the performance seen by applications along with the resources consumed by the net-
work.

4.4.1. Three Multiplexing Policies of Interest

We began by investigating a total of twelve multiplexing policies. These twelve policies
represent all combinations of our three conversation-to-virtual circuit mapping schemes, our two
packet queueing disciplines, and our two cell queueing disciplines. As expected, however, they
fell into three groups according to performance, fairness, and resource consumption. For reada-
bility, we present results for three representative policies:S Per-conversation VCs − One virtual circuit per conversation with first-in first-out packet

queueing and round-robin cell queueing.T Per-type VCs − One virtual circuit per traffic type with first-in first-out packet queueing and
round-robin cell queueing.U Per-destination VCs − One virtual circuit per destination router with first-in first-out packet
queueing and first-in first-out cell queueing.

Our choice of network configuration is responsible for the collapse of our twelve parameter
combinations into three groups. Certain conversation-to-VC mapping schemes negate the effect
of certain queueing disciplines, and vice versa. On the one hand, a round-robin discipline
behaves like first-in first-out if it is only servicing one queue. This situation occurs, for example,
with per-destination VCs; there is only one VC and thus only one cell queue. On the other hand,
the performance characteristics of multiple queues are identical to those of a single queue if
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they are serviced by a first-in first-out discipline. In addition to these two factors, we recall that
the absence of network-level flow control renders moot the choice of packet queueing discipline.
The three policies outlined above represent the parameter space of interest.

4.4.2. Network Load

As apparent in the traffic characterization of Chapter 2 and the traffic models of Chapter 3,
conversations of different types offer different workloads. We can now quantify this behavior
through simulation.

1 2 3 4 5

0

0.25

0.5

0.75

1

Bottleneck
Utilization

(fraction)

Simultaneous conversations (count)

FTP

NNTP

. . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .
SMTP

∆ ∆ ∆ ∆ ∆
TELNET

Figure 4.2. Load imposed on the network by each traffic type

Figure 4.2 shows the load imposed on the network by the four traditional traffic types
modeled in the previous chapter. It graphs the average bottleneck link utilization as the number
of conversations of each type of traffic is increased. The curves are for the multiplexing policy
with per-conversation VCs, but all three multiplexing policies yield similar results under this
metric. As shown, file transfers (FTP) saturate the network with only three or four simultaneous
conversations. At the other extreme, remote terminal sessions (TELNET) leave the network
mostly idle. Electronic mail (SMTP) and network news (NNTP) load the network to varying
degrees.

The differences in offered load follow from the findings in Chapter 2 and the models of
Chapter 3. A bulk transfer source sends the packets forming a data item as fast as flow control
allows, except when it is engaged in a control handshake between data items. In the case of
FTP, these data items are files composed mostly of multiple maximum-sized packets. The
resulting back-to-back arrivals of large packets enables a small number of FTP sources to
saturate the network. In contrast, NNTP and SMTP send news articles and mail messages,
respectively, that are in many cases smaller than the maximum packet size. They thus send
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smaller packets than FTP with more frequent pauses for control handshakes. As a result, a
higher number of NNTP and SMTP conversations are needed to saturate the network. Finally,
interactive sources send mostly minimum-size packets separated by pauses in human time
scales. The long pauses and small packets account for the fact that a great many TELNET
sources are necessary to perceptibly load the network. Each traffic type behaves differently, sug-
gesting that the network should treat them differently.

Incidentally, the network’s ability to reach 100% utilization confirms that statistical multi-
plexing makes efficient use of bandwidth. A single conversation of any type cannot bring about
full utilization due to the pauses in transmission described above. For the same reason, a single
conversation cannot achieve throughput equal to the full available bandwidth. However, enough
simultaneous conversations will reach 100% on both utilization and throughput counts in our
simulated network. In a real network, protocol overhead can significantly curtail the throughput
obtained by applications, as we shall see in Chapter 5.

We have so far presented simulation results for a network that carries traffic of a single
type. In the following sections, we present results using a mix of bulk transfer and interactive
traffic. In all the simulations discussed there, we maintain a single TELNET conversation while
varying the number of simultaneous FTP conversations. For brevity, we use FTP as an example
of a bulk transfer application, but our results are similar for NNTP and SMTP. As shown in Fig-
ure 4.2, NNTP and SMTP conversations impose a lighter load than FTP conversations. How-
ever, their overall behavior is the same: they send bulk data as fast as they can. Therefore, an
appropriately higher number of simultaneous NNTP and SMTP conversations has similar effects
on performance and resource consumption as the number of FTP conversations involved in our
discussion.

4.4.3. Performance

In addition to network load, VCSIM allows us to quantify the delay and throughput
obtained by each type of traffic involved in a simulation. We have discussed in Chapters 2 and 3
how different traffic types demand different performance. Within its resource limits, the net-
work should provide high throughput to bulk transfer applications. In addition, the network
should provide low delay to interactive applications. It should also be fair to individual conver-
sations of each type of traffic.

4.4.3.1. Interactive Delay

Figure 4.3 shows the average delay obtained by interactive applications under different
multiplexing policies. It graphs the average round-trip delay observed by a TELNET conversa-
tion as network load increases. Delay is expressed in units of network round-trip times (RTT),
in our case 45 milliseconds. Normalizing metrics in this way helps yield a network-independent
representation of our results. Load is expressed in units of simultaneous FTP conversations.

As shown, per-type VCs and per-conversation VCs exhibit good performance under load
while per-destination VCs exhibit poor performance. For all three policies, delay begins very
near 1 RTT, the minimum round-trip delay provided by the network. Delay increases almost
imperceptibly with load under per-type and per-conversation VCs. These two multiplexing poli-
cies provide optimal performance from the point of view of interactive traffic sources. However,
delay increases rapidly with load under per-destination VCs. In wide-area networks, with their
substantial round-trip times, this performance degradation is readily noticeable by human users
and is not acceptable.
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Figure 4.3. Interactive delay under different multiplexing policies

The reasons for the difference in observed delay are as follows. Interactive sources send
mostly widely-spaced small packets, while bulk transfer sources send predominantly bursts of
large packets. The multiplexing policies using per-type and per-conversation VCs separate these
two types of traffic, giving each its own queue and servicing the set of queues in a round-robin
fashion. The interactive traffic queues are assured of timely service regarless of how much bulk
transfer traffic is queued, since the round-robin server visits the interactive queues as often as it
visits the bulk transfer queues. In contrast, the multiplexing traffic using per-destination VCs
indiscriminately mixes the two types of traffic in one first-in first-out queue. Under load,
interactive traffic is often queued behind large amounts of bulk transfer traffic and thus incurs
long delays.

4.4.3.2. Bulk Transfer Throughput

Figure 4.4 shows the average throughput obtained by bulk transfer applications under dif-
ferent multiplexing policies. It graphs the average throughput obtained by FTP conversations as
network load increases. Throughput is normalized to units of bottleneck link speed, in our case
1.5 Megabits per second. Load is expressed in units of simultaneous FTP conversations. A
background TELNET conversation is also present in these simulations to maintain a basis for
comparison with the previous graph.

We see that all three multiplexing policies have the same average throughput characteris-
tics. For all three policies, throughput begins at the maximum obtainable by a single FTP
conversation. This maximum corresponds to the network utilization under one FTP conversa-
tion shown in Figure 4.2, and is not equal to the full bandwidth of the network for the reasons
explained in Section 4.4.2. Throughput then degrades with load, but this is inevitable given that
three or more simultaneous FTP conversations saturate the network, as shown also in Figure 4.2.
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Figure 4.4. Bulk transfer throughput under different multiplexing policies

The key observation is that average throughput degrades equally with all three multiplexing poli-
cies.

The reasons for the comparable throughput behavior are as follows. When the network is
lightly loaded, there is little queueing. Under these conditions, the choice of multiplexing policy
has little effect on throughput. As the network becomes congested, regardless of the multiplex-
ing policy, the bottleneck link saturates, queues build up, and delays rise. The transport-level
protocol in the hosts only sends additional data when acknowledgements return. With higher
delays, acknowledgements take longer to return to sending hosts, which in turn decreases aver-
age throughput for all hosts under all three multiplexing policies.

Although the average throughput characteristics are similar under all three multiplexing
policies, individual bulk transfer conversations observe unequal throughput under certain multi-
plexing policies. We address this fairness issue below.

4.4.3.3. Fairness Among Bulk Transfer Conversations

Figures 4.5 and 4.6 show the throughput obtained over time by each of five simultaneous
FTP conversations, under per-conversation VCs and under per-type VCs, respectively. The
results for per-destination VCs are very similar to those for per-type VCs and we leave them out
of the remaining discussion. We first note that the network achieves 100% utilization under both
multiplexing policies (each of the 5 sources obtains approximately 20% of the available
bandwidth). Both policies thus meet our bandwidth efficiency goals. However, per-
conversation VCs meet our fairness goals more successfully than per-type VCs. As shown, per-
conversation VCs divide network resources fairly and provide each conversation with the same
level of throughput. In contrast, per-type VCs provide some conversations with better
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Figure 4.5. Fairness provided to bulk transfer conversations under per-conversation VCs
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throughput than others.

The differences in throughput are caused by the interaction of queueing delays in the net-
work and window flow control in the hosts. Per-conversation VCs give each conversation its
own queue and service the set of queues on a round-robin basis. In this case, all hosts see nearly
the same delay and their flow control mechanisms act in lockstep, that is, their windows remain
in phase. The result is nearly identical throughput for all hosts.

On the other hand, per-type VCs mix conversations of the same type in a single first-in
first-out queue. In this case, a subset of the conversations win the race for network resources.
Their data arrives first at the front of the bottleneck queues and other conversations necessarily
fall behind. The winning conversations see low delays in the form of timely acknowledgements,
their windows advance, and they continue to send data. The losing conversations, however, see
high delays, their windows do not advance, and they slow their transmission. The result is
higher throughput for the winners than for the losers. In a related effect, hosts interpret delays
higher than a certain threshold as dropped packets and proceed to retransmit those packets.
Because of the randomness built into retransmission strategies, losers can become winners, caus-
ing previous winners to become losers. These phase dynamics are apparent in Figure 4.6, where
different hosts obtain preferred treatment at different times.

Such segregation of traffic sources into winners and losers has been noted in previous stu-
dies of flow and congestion control [32] [58] [99] [102]. However, we find the resulting loss of
fairness to be less severe than previously reported due to our use of smaller bulk transfers in our
simulations. Previous studies have used large bulk transfers that do not reflect those found in
real networks, as noted in Chapter 2. In contrast, our workload model faithfully reproduces real
bulk transfers, as described in Chapter 3. Small bulk transfers hold resources for a relatively
short time before a control handshake or the end of the conversation occurs. These pauses
between data items allow other conversations access to resources.

We see in the discussion below how the per-type VCs multiplexing policy trades this loss
in throughput fairness for substantial savings in memory costs.

4.4.4. Resource Consumption

In addition to performance, we are also concerned with resource consumption. Memory
and bandwidth are costly resources in wide-area networks. Since the highest degree of queueing
occurs at a network’s bottleneck points, the amount of buffer memory consumed at these points
is a useful measure of total memory consumption. We explore this measure below and
separately address the efficient use of bandwidth in the next chapter.

4.4.4.1. Bottleneck Buffer Consumption

Figure 4.7 shows the bottleneck buffer consumption under different multiplexing policies.
It graphs the instantaneous sum of queue lengths at the input router as network load increases, in
particular the average of many such sums sampled throughout the simulation. Buffer consump-
tion is normalized to units of network round-trip windows (RTW), in our case 8,438 bytes. Load
is expressed in units of simultaneous FTP conversations. A background TELNET conversation
is also present in these simulations.

In this case, per-type VCs and per-destination VCs consume moderate amounts of
resources, while per-conversation VCs consume excessive amounts of resources. For all three
policies, buffer consumption begins near zero. When the network is lightly loaded, there is no
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Figure 4.7. Bottleneck buffer consumption under different multiplexing policies

queueing and thus no buffers are consumed. As the network becomes more heavily loaded,
buffer consumption under per-type VCs and per-destination VCs increases by one network
round-trip window with each bulk transfer conversation added to the offered load. However,
buffer consumption under per-conversation VCs rises as a multiple of the offered load.

This buffer consumption result may seem non-intuitive in a network without resource reser-
vations. With all other factors being equal, there may appear to be no reason why any number of
statistically multiplexed virtual circuits should consume more resources than another number.
For an explanation of this apparent discrepancy, we turn to the behavior of the transport-level
windows that regulate transmission on the hosts.

4.4.4.2. Behavior of Transport-Level Windows

We recall that transport-level protocols like modern TCP dynamically change their window
size to adjust to perceived network conditions. The predominant algorithm for this purpose is
the slow-start congestion control scheme [47].

The slow-start algorithm begins with a one-packet window and increases the window size
up to a preset limit as it receives timely acknowledgements. It first increases the window size
rapidly, doubling it with each acknowledgement, until a threshold is reached. It then increases
the window size slowly, by one packet with each acknowledgment. The protocol also sets
timers to measure how long acknowledgements take to return. It uses these measurements to
maintain estimates of the mean and deviation of round-trip delays. If the time before a packet is
acknowledged exceeds the current estimate of the mean by more than some multiple of the
current estimate of the deviation, the protocol assumes the packet is lost and retransmits it. After
every retransmission, the window size is reduced to one packet and the procedure repeats. All
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the simulations reported here use the slow-start algorithm in the hosts.

Figures 4.8 and 4.9 show the TCP window size over time for FTP conversations, under
per-conversation VCs and per-type VCs, respectively. The window behavior for per-destination
VCs is very similar to that for per-type VCs and we leave it out of the discussion below. As
shown, under per-conversation VCs, window sizes increase steadily until they reach their max-
imum value and remain there. Under per-type VCs, window sizes never reach the maximum
before they shrink to one packet and resume growing.

Like the unfairness phenomena already described, this behavior is due to the different delay
characteristics of the different multiplexing policies. Per-conversation VCs provide delays that
vary relatively slowly for each conversation. This policy gives each conversation its own virtual
circuit and queue, and services the set of queues on a round-robin basis. The results of slow-
varying delay are as follows: the round-trip delay estimators in the hosts are able to track net-
work behavior, acknowledgements return within the expected time interval, hosts do not time
out or retransmit packets, and windows grow steadily to their maximum value and remain there.
Predictable delays have already been suggested by Figure 4.3, where per-conversation VCs were
shown to provide consistently low delays to a source with its own virtual circuit.

In contrast, per-type VCs provide delay that varies quickly for individual bulk transfer
sources. This policy mixes traffic from different bursty sources in the same virtual circuit and
queue, and serves these sources on a first-in first-out basis. The results of quickly-varying delay
are as follows: the round-trip delay estimators in the hosts are not able to track network
behavior, acknowledgments take longer than expected, hosts time out, and windows shut down.
We substantiate our reasoning with additional simulation results below.
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Figure 4.10. Deviation in delay under per-type VCs
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Figure 4.10 shows, for the case of per-type VCs, the difference over time between the latest
delay measured by a host and the current value of the host’s delay estimator. We recall that our
simulated network never drops packets, and therefore these variations in delay can only be due
to variations in queueing delay. Figure 4.11 shows the sum of queue lengths in the router over
time, again for per-type VCs. We note a high correlation between the peaks in these queue
lengths, the peaks in delay deviation shown in Figure 4.10, and the drops in window size shown
in Figure 4.9. Queue buildup causes unexpectedly long delays, which in turn cause windows to
shut down.
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Figure 4.11. Sum of bottleneck queue lengths under per-type VCs

Returning to our unexplained buffer consumption results, we now see that they are caused
by the interaction between queueing delays in the network and transport-level windows in the
hosts. Under per-conversation VCs, bulk transfer sources maintain large windows and continue
to send data in the face of congestion. Consequently, bottleneck queues continue to grow and
buffer consumption reaches high levels. In the case of per-type VCs, bulk transfer sources shut
down their windows and stop sending data in the onset of congestion. Consequently, bottleneck
queues drain and buffer consumption remains at moderate levels.

Our results apply to real networks even though our simulated network has infinite buffer
capacity. Real networks do not have an infinite supply of buffers. After congestion reaches a
certain point, a real network would drop packets and retransmissions would occur, especially
with per-conversation VCs because of the excessive queue buildup noted above. However, our
results show that a network with per-type VCs can more easily manage congestion since it can
avoid packet losses using moderate amounts of memory.

Although a network with per-type VCs and the requisite amount of memory is not com-
pletely free of retransmitted packets due to variations in delay, it is more stable than one with
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real packet losses. In support of this claim, we note that average throughput does not suffer
under any multiplexing policy and that the network reaches 100% utilization under all multiplex-
ing policies (see Figures 4.5 and 4.6). They key observation is that hosts perceive only isolated
packet drops under per-type VCs. They do not perceive consecutive packet drops, which would
cause exponential back-offs before the slow-start algorithm resumes transmission. Thus,
although per-type VCs cause hosts to occasionally retransmit packets and temporarily shut down
their windows, these hosts quickly resume growing their windows. In short, per-type VCs and
the slow-start algorithm interact to allow bulk transfer hosts to obtain close to their fair share of
throughput and to efficiently utilize the available bandwidth, while consuming moderate
amounts of buffer memory.

4.4.5. Sensitivity to Transport-Level Window Size Limits

The simulations described above used a consistent upper limit for the size of transport-level
windows on the hosts. However, our results apply to other values, with some qualification.
Transport protocols like TCP with slow-start set an upper limit to the size of their flow control
windows. We have seen these protocols dynamically grow their windows to make full use of the
available bandwidth. That is, they grow their windows to avoid being window-limited. How-
ever, beyond a certain point the network and receiving host become saturated and an increase in
window size does not improve throughput. As we have also seen, protocols can stop growing
their windows to match these bandwidth-limited conditions. Nevertheless, setting an upper limit
is a conservative measure that helps to maintain stability.

There is no direct relationship between window size limits on hosts and the intrinsic
round-trip window of a network. Sending hosts set a limit that has as much to do with the
expected capacity of the receiving host as with the capacity of the intervening network. The
choice is made more difficult by the many different types of hosts (workstations, servers, super-
computers) and the many different types of networks (LANs, MANs, WANs) that comprise a
large internetwork. In practice, hosts set oversize limits to avoid ever being window-limited,
relying on the dynamic window mechanism to adjust to prevailing conditions. We ran our simu-
lation experiments using a high limit for the size of the flow control window in the hosts (128
outstanding packets). Our oversize limit follows common practice, but raises concerns that our
results do not extend to other scenarios.

To explore the sensitivity of our results to window size limits, we repeated our experiments
with a smaller limit, one that more closely matches the intrinsic round-trip window of the net-
work (16 outstanding packets). The effects of the multiplexing policies reported above are still
apparent under these conditions. In particular, the interactive delay and bulk transfer throughput
results carry over to the new conditions without change. Buffer consumption again rises faster
with per-conversation VCs than with per-type and per destination VCs, but the ratio in slopes
narrows from 5 with oversize windows to 2 with matched windows. In general, buffer consump-
tion rises more slowly with smaller windows because hosts send data in smaller bursts. Less
bursty arrivals at a queueing point result in smaller average queue lengths [60] [62].

Thus, the savings in buffer memory attributed to per-type VCs are not as dramatic with
matched windows as with oversize windows. However, we recall that matching window sizes,
although simple in the context of simulation, is difficult in the context of a large internetwork.
Underestimating the true round-trip window that is in effect during a conversation will reduce
buffer memory consumption regardless of multiplexing policy, but may window-limit the
conversation and reduce its throughput.
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4.4.6. Sensitivity to Link Speed

The simulations described above used a relatively low link speed (1.5 Megabit/second), but
the exact choice is unimportant. We were careful to insure that our workload model is indepen-
dent of link speed. Scaling the simulation to a low speed substantially reduced our computation
requirements. For instance, we were able to bring about the multiplexing problems of interest by
mixing an interactive conversation with only a small number of bulk transfer conversations (the
network saturates with 3 to 4 simultaneous FTP conversations; we simulated up to 5). However,
these multiplexing problems are not a function of the link speed per se but of the bottleneck link
utilization, that is, of the load on the network. If we scale the network speed up or down and
scale the offered load accordingly, our multiplexing results should remain the same.

To verify this hypothesis, we repeated our experiments with faster links (3
Megabit/second). As expected, we needed a correspondingly higher number of conversations to
bring out the multiplexing problem (the faster network saturates with 7 to 8 simultaneous FTP
conversations; we simulated up to 10). Under these conditions, all the multiplexing phenomena
reported earlier repeat with the same magnitude under the new conditions. Therefore, our results
scale with link speed.

4.5. Conclusions

We have presented a simulation study of traffic multiplexing issues at the entrance to
wide-area networks. We evaluated schemes for mapping datagram streams to virtual circuits
and queueing disciplines for scheduling datagrams onto virtual circuits. We pursued a metho-
dology that included choosing appropriate configuration parameters, validating our simulator,
and obtaining confidence intervals. Our simulation results quantify the tradeoffs between perfor-
mance, fairness, and resource consumption that should govern multiplexing decisions.

We found that the best multiplexing policy is to establish one virtual circuit per traffic type
and to provide round-robin service among virtual circuits. Per-conversation virtual circuits with
round-robin service provide low interactive delay but consume excessive amounts of memory.
Per-destination virtual circuits with first-in first-out service consume moderate amounts of
memory but provide high interactive delay. Per-type virtual circuits with round-robin service
combine the advantages of the other two policies while avoiding their disadvantages, with the
exception of a fairness degradation in bulk transfer throughput. There are also less tangible
benefits to opening only one virtual circuit per traffic type. In addition to the substantial memory
savings described in this chapter, there are minor savings in routing and switching table space.
For all these reasons, per-type VCs are superior to per-conversation and per-destination VCs.

These results suggest an attractively simple scheme for managing a virtual circuit network
that carries datagrams: The network should establish a set of permanent virtual circuits, one for
each type of traffic flowing between two network points of presence. The set of traffic types and
thus the set of virtual circuits that must be supported is well-defined and changes slowly. These
permanent virtual circuits avoid dynamic establishment delays and behave like the virtual cir-
cuits in our simulations.

We have compared throughput and delay to buffer consumption in the context of multiplex-
ing datagrams over cell-based virtual circuits. In the same context, the next chapter addresses
transmission efficiency, an issue that affects both the throughput obtained by applications and
the efficient use of network bandwidth.



- 66 -

5. Transmission Efficiency

5.1. Introduction

Bandwidth is the most expensive resource in a long-haul network. The efficient use of
bandwidth is thus an important consideration when multiplexing traffic at the entrance to wide-
area networks. Network designers avoid transmission overhead to give users better access to
available bandwidth. Transmission efficiency, or the ratio of useful bytes to total bytes carried by
a network, measures how well networks achieve this goal. Protocols and techniques that
improve efficiency should be considered when designing a network.

This chapter presents the transmission efficiency achieved by cell-based networks when
transporting wide-area data traffic. Variable-length datagrams arrive at the entrance to a cell
network and are fragmented into fixed-sized cells. Factors such as the size of incoming
datagrams, the size of cells, and the size of protocol headers all affect transmission efficiency.
This treatment of bandwidth consumption adds to our investigation of buffer consumption and
other traffic multiplexing issues in the previous chapter.

We use Asynchronous Transfer Mode (ATM) networks as the prevalent example of cell-
based networks. ATM is the multiplexing technique recommended for future Broadband
Integrated Services Digital Networks (B-ISDN) [41] [72] [84], that is, high-speed networks that
will mix traditional data traffic with voice, video, and other forms of non-traditional traffic.
Many ATM networks are being designed and built [35], and many more will come into opera-
tion in the near future.

By wide-area data traffic we mean traffic carried by the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP) of the Internet family of protocols. The success
of the Internet family of protocols suggests they will continue to be a significant portion of the
traditional data traffic carried by wide-area networks. As discussed in Chapter 2, the Internet is
the largest internetwork and is growing rapidly. We observed that more than 94% of wide-area
Internet traffic is due to TCP and UDP. Future networks will carry audio and video traffic with
different characteristics from current traffic. However, traditional forms of traffic will prevail
for several years and will continue to be used for much longer. As a result, future B-ISDN net-
works based on ATM must efficiently support TCP and UDP traffic.

Transmission efficiency will remain an important issue as networks evolve. Granted, the
performance effects of protocol overhead decrease as communication lines become faster. How-
ever, there remains a significant economic cost to wasted bandwidth. Historically, high-speed
communication outside the local area has carried a high price. This situation may continue due
to the high cost of upgrading land lines. Even if long-haul prices fall due to sharing of lines
among many users, not everyone will benefit from the economies of scale. Consider an
integrated services network that reaches to the home. Installing a high-speed access line between
a home and the nearest network point of presence will continue to be costly. This cost will not be
shared among many users. In some cases the old, slower line will not be upgraded because of



- 67 -

economic considerations. Whether an access line is upgraded to high speeds or is kept at slower
speeds, both the user and provider of the line will remain conscious of the quality of service pro-
vided for a certain price. It will always be necessary for networks to operate efficiently.

There are three major causes of transmission inefficiency. First, as application-level data
flows through the network, protocols add header and trailer overhead. Internet protocols like
TCP, UDP, and IP add headers to form a datagram, and network-level protocols add additional
headers and trailers to from a frame. Second, some protocols add overhead to satisfy byte-
alignment requirements for their headers and trailers. Finally, in cell-based networks, another
source of inefficiency is the fragmentation of variable-length packets into fixed-length cells.
When a packet is presented to an ATM network, it is separated into a sequence of cells. In gen-
eral, the last cell in the sequence will be only partially filled with packet data. Any unused space
in the last cell is padded with dummy bytes that add to the overall inefficiency. For a given
stack of protocols, the extent of these three problems is highly dependent on the workload
presented to the network, particularly on the size distribution of application data units.

We calculate three measures of transmission efficiency to isolate the effects of overhead
contributed by three different levels in the protocol hierarchy. We define transmission efficiency
as the ratio of useful bytes to total bytes carried by a network’s communication lines, expressed
as a percentage. Useful bytes can refer to bytes originally sent by an application program, or
also include header and trailer bytes added by lower level protocols. First, for application
efficiency, useful bytes refer only to application-level bytes; it is efficiency as viewed by an
application program. Second, for datagram efficiency, useful bytes include application-level
bytes and TCP, UDP, and IP header bytes; it is efficiency as viewed by a host transmitting IP
datagrams. Third, for frame efficiency, useful bytes include datagram-level bytes and framing
protocol bytes; it is efficiency as viewed by the framing protocol. Bytes inside ATM cell
headers, adaptation headers, adaptation trailers, and cell padding are not considered useful in any
of these measures.

Figure 5.1 illustrates some of the efficiency concerns addressed in this chapter. It shows
datagram efficiency as a function of payload size, that is, the portion of an ATM cell used to
carry higher-level data. The input to the calculation was a histogram of wide-area TCP-IP and
UDP-IP datagram lengths extracted from the wide-area traffic traces described in Chapter 2.
The ATM-related protocol overhead used was 28 bytes per datagram and 9 bytes per cell,
corresponding to standard protocols described later in this chapter. The solid line represents the
efficiency obtained by following standard ATM procedures, including padding partially-filled
cells to the standard fixed size. The cross-marked line represents the efficiency obtained when
this padding is not transmitted. The difference between the two lines is the efficiency lost to cell
padding.

We observe the following:g Efficiency responds abruptly to changes in payload size. The sharp drop in efficiency near
48 bytes of payload is due to the abundance of wide-area TCP-IP datagram lengths between
40 and 50 bytes. After ATM-related overhead, these short datagrams generate one full
ATM cell and a second cell that is mostly padding. Moving from the 48-byte CCITT stan-
dard payload to a 54-byte payload increases efficiency by almost 10%. The previously pro-
posed payload sizes of 32 bytes and 64 bytes both perform better than the size chosen for
the standard.
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Figure 5.1. Efficiency of ATM Networks in Transporting Wide-Area Traffic

h Discarding cell padding not only reduces overhead but also smooths the efficiency curve.
At the standard payload size, not padding partially-filled cells increases efficiency by 12%.
As evident by the smoothness of the upper curve, the jaggedness in the lower curve is
almost entirely due to cell padding.i With padding, transmission efficiency as seen by a host is only 62.9% at the standard
operating point and never rises above 72%. Under the same conditions, a similar calcula-
tion shows that efficiency as seen by an application program is considerably worse − it
never rises above 49%.

These results suggest that ATM networks are inefficient in transporting wide-area data
traffic. In this chapter, we investigate whether the phenomena evident in Figure 5.1 extend to
other ATM-related protocol choices. We also study the effects on efficiency of non-standard
compression techniques such as pad deletion. To insure an accurate traffic characterization, we
drive our efficiency calculations with the measured traffic statistics described in Chapter 2.

The rest of this chapter presents our study in more detail. Section 5.2 surveys previous
work in this area. Section 5.3 presents the transmission overhead introduced by Internet-related
and ATM-related protocols. Section 5.4 presents a characterization of TCP and UDP datagram
sizes derived from the traffic measurements described in Chapter 2. Finally, Section 5.5
discusses our efficiency calculations.
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5.2. Previous Work

Kleinrock et. al. [61] studied line overhead in the ARPANET during the mid-1970’s. They
noted the critical dependence of network efficiency on traffic mix − they found that average
transmission efficiency could be as low as 1% for single-character traffic and as high as 79% for
file transfer traffic. They suggested that designers of future network protocols take more account
of the effect of line overhead on network performance. We note that ATM networks also exhibit
severe efficiency problems for an important class of traffic, and make a similar suggestion to
designers of protocols for ATM networks.

DeSimone [23] calculated ATM transmission efficiency using a TCP and UDP traffic
model based partly on network measurements. He derives an application mix and the
corresponding packet length distribution from a combination of previous network measurement
studies [11] [37] and his expectations of how networks will evolve. In contrast, we drive our
calculations directly with TCP and UDP packet lengths measured in the wide-area Internet.
Important differences between his and our workload models include our greater ratio of interac-
tive to bulk transfer traffic and our smaller average packet size. He calculates the same three
measures of efficiency that we call application, datagram, and frame efficiency. He presents
results for one of the three protocol combinations and two of the three compression techniques
we discuss here. Because of differences in assumed workload, he finds the effects of discarding
ATM cell padding less significant than we do − he saw an improvement in efficiency of only 2 to
3%; we see 4 to 12%. Similarly, after compressing TCP-IP headers he saw improvements of 0
to 7%; we see 5 to 12%. As a result, we draw different conclusions regarding the merits of these
two compression techniques.

Cidon et. al. [13] critique ATM from a data communications perspective. They conclude
that for traditional datagram applications, networks that carry variable-sized packets are better
than those that carry small fixed-size cells because of several considerations, including transmis-
sion efficiency. We note that future networks must support real-time traffic as well as traditional
traffic, and that cells can serve the needs of these varied types more easily than packets. Given
that many cell networks will exist, we evaluate their transmission efficiency in detail and explore
ways to improve that efficiency.

5.3. Protocol Overhead

In an ATM network transporting TCP and UDP traffic, protocols introduce transmission
overhead at all levels in the hierarchy. This overhead takes three forms: header and trailer bytes,
alignment bytes, and padding bytes. Header and trailer overhead are fixed per data unit, while
alignment and padding overhead are variable. In our calculations, we consider only overhead
added below the application level. We ignore overhead added to user data by applications such
as TELNET and FTP.

After an application data unit is prepared for transmission, Internet protocols add their
share of overhead while forming a datagram, as shown in Figure 5.2. In the absence of rarely-
used protocol options, TCP adds 20 bytes of header at the transport level and UDP adds 8. IP
adds another 20 bytes at the internetwork level.

The network then forms a frame by wrapping each datagram with an optional frame header,
trailer, or both, as shown in Figure 5.2. Examples of proposed protocols at the frame level are
AT&T’s Frame Relay Service for Xunet 2 (XFRS) [52] [35] and Bellcore’s Switched Multi-
Megabit Data Service (SMDS) [103]. These protocols add to the services provided by the
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lower-level protocols. All three include in the frame the length of the enclosed datagram so that
the datagram can be reconstructed from a stream of fixed-length cells. In addition, XFRS pro-
vides sequencing to detect the loss of full frames and detects bit errors in both the datagram and
the frame trailer. This combination of techniques allows XFRS to handle both the corruption of
single bits and the loss of full ATM cells. SMDS detects similar types of errors and supports a
larger source and destination address space than IP does. XFRS adds 12 bytes of trailer and
SMDS adds 24 bytes of header and 4 bytes of trailer per frame. An XFRS trailer must be also
8-byte aligned and reside entirely in one ATM cell, which may introduce additional overhead in
the form of alignment bytes.
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An ATM network will then break up a frame into fixed-length cells whose format is shown
in Figure 5.3. The CCITT ATM standard calls for 53-byte cells with 5 bytes of header and 48
bytes of payload. The ATM header provides virtual circuit identifiers and single-bit error detec-
tion on the contents of the cell header alone. An optional adaptation layer inserts in each pay-
load a header, a trailer, or both, leaving the remaining space to carry frame data. Examples of
proposed adaptation protocols are Bolt, Beranek and Newman’s Segmentation and Reassembly
(SAR) protocol [28] and IEEE’s 802.6 segmentation and reassembly layer [26]. These protocols
add services not provided by the bare ATM standard, in particular error detection and correction.
SAR provides sequencing to detect the loss of full cells, and also detects bit errors in the pay-
load; 802.6 provides similar error-detection. In order to account for partially-filled cells, 802.6
also specifies the number of higher-level bytes actually carried in the payload; SAR leaves this
responsibility to higher levels. SAR adds 3 bytes of trailer and 802.6 adds 2 bytes of header and
2 bytes of trailer.
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Table 5.1 summarizes the fixed overhead contributed by the services and protocols just dis-
cussed.
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Table 5.1. Fixed Protocol Overhead

In addition to header, trailer, and alignment overhead, ATM networks introduce fragmenta-
tion overhead in the form of padding bytes. When the length of a frame is not an integral number
of usable payload lengths, the last cell for that frame is padded to the required fixed length. The
amount of overhead contributed by fragmentation is equal to the number of bytes left unused in
the last cell for the frame.

Finally, the physical layer also introduces overhead. For example, the DS3 transmission
standard offers a raw 44.7 Megabits/second. The IEEE 802.6 standard calls for 12 ATM cells
per 125-microsecond DS3 frame, which yields 40.7 Megabits/second, or 91% transmission
efficiency [23]. The effects of the physical layer are ignored in our efficiency calculations.

5.4. Datagram Length Characterization

Since transmission efficiency is strictly a function of the number of bytes carried by a net-
work, the efficiency of ATM networks in transporting wide-area Internet traffic is critically
dependent on the length distributions of IP datagrams. Figure 5.4 is a histogram of TCP applica-
tion data lengths extracted from the network traffic traces described in Chapter 2, and Figure 5.5
is a similar histogram for UDP. These histograms depict data from the University of California
at Berkeley, but trace data from other sites produce very similar histograms (see Appendix A).

TCP is the dominant protocol on the Internet − it is responsible for more than 80% of all
packets, as we saw in Chapter 2. Consequently, the distribution shown in Figure 5.4 dominates
our efficiency calculations. It is bimodal, with very large peaks near 0 bytes and 512 bytes. The
0-byte peak represents almost 40% of all TCP-IP datagrams and is due to acknowledgements
and other control information traveling without accompanying data.† The next largest peak
represents 30% of all TCP-IP datagrams; it is due to data units between 0 and 10 bytes
exchanged by interactive network applications like TELNET and RLOGIN. The 512-byte ands s�s�s�s�s�s�s�s�s�s�s�s�s�s
† A majority of 40-byte TCP-IP datagrams contain only acknowledgements. The fact that TCP is
seldom able to piggy-back acknowledgements on reverse-flowing data suggests that TCP connec-
tions between wide-area applications are predominantly one-way. If there was more reverse-
flowing data, piggy-backed acknowledgements would improve efficiency.
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536-byte peaks are due to the Maximum Segment Size (MSS) for wide-area networks configured
in most Internet hosts.‡ Figure 5.5 shows similarly well-defined peaks in UDP data lengths.
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Figure 5.5. Histogram of UDP application data lengths
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‡ To avoid IP fragmentation [54], the TCP MSS is set to roughly 40 bytes less than 576, the
commonly-used IP Maximum Transmission Unit (MTU) for wide-area networks. The choice of
576 is historical and should be reconsidered since the actual MTU of the NSFnet backbone is at
least 1500 bytes. Methods for setting a more accurate IP MTU are discussed in Reference [74]. A
higher MTU would result in higher efficiency.
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These length characteristics have a strong negative impact on efficiency. As we observed,
TCP-IP datagrams are often the smallest possible, and both TCP and UDP datagrams are
predominantly small. Almost 70% of TCP-IP application data units are smaller than 10 bytes,
and more than 84% are smaller than 256 bytes. Almost 80% of UDP application data units are
smaller than 48 bytes, and more than 97% are smaller than 150 bytes. In general, the efficiency
of a network carrying small data units is more adversely affected by protocol overhead than the
efficiency of a network carrying large ones.

The abundance of TCP application data unit lengths between 0 and 10 bytes has a particu-
larly strong effect on ATM efficiency. In ATM networks, the loss of efficiency due to cell pad-
ding depends on how application data lengths map into cell payload lengths. TCP-IP datagrams
with 0-10 bytes of application data are 40-50 bytes long. In comparison, the standard ATM cell
payload is 48 bytes long. After framing and adaptation overhead are added, these short TCP-IP
datagrams often fill one complete 48-byte payload and very little of another. Cell padding over-
head becomes significant when for every two cells transmitted one consists almost entirely of
padding. This phenomenon was responsible for the large efficiency loss near 48 bytes of payload
evident in Figure 5.1.

5.5. Transmission Efficiency

5.5.1. Efficiency of Standard Procedures

Table 5.2 shows the transmission efficiency of four protocol combinations. The SMDS-
802.6 combination is a proposed standard, and XFRS is intended for use in Xunet 2 [35]. XFRS
does not need an adaptation layer, thus our use of the XFRS-none combination, which inciden-
tally shows the effects of doing without an adaptation layer. SAR is a recent proposal that can
be used alone or with SMDS or some other framing protocol. We include the none-SAR combi-
nation to show the effects of doing without a framing layer. The overhead introduced by these
protocols was discussed in Section 5.3. All calculations were driven directly by the measured
application data lengths discussed in Section 5.4. Throughout, we used a 53-byte cell with a 5-
byte header and a 48-byte payload.

Figure 5.6 displays the same information in graphical form. Each horizontal bar represents
one protocol combination. From left to right, the three subdivisions in each bar represent appli-
cation, datagram, and frame efficiency, respectively. Since the none-SAR protocol combination
introduces no framing overhead, its datagram and frame efficiency results are identical.

As expected, protocols with less overhead are more efficient than protocols with more over-
head. However, due to the interaction of datagram lengths and cell padding, efficiency is insen-
sitive to large variations in certain protocol design dimensions, and sensitive to small variations
in others. Table 5.2 shows that moving from SMDS-802.6, with 28 bytes of per-frame overhead
and 4 bytes of per-cell overhead, to XFRS-none, with only 8 bytes of per-frame overhead,
improves application efficiency by only 4.6%. In contrast, Figure 5.1 shows how a change in
payload size from 50 to just 54 bytes can increase datagram efficiency by 10%.

Datagram header overhead, not ATM network overhead, is responsible for the difference
between application and datagram efficiency. For the protocol configurations shown in Table
5.2, the overhead intrinsic to TCP, UDP, and IP is responsible for 18.6 to 24.3% of the 47.7 to
59.9% overall loss in application efficiency. ATM-related protocols and procedures are not to
blame for this portion of the efficiency loss. However, ATM networks could make use of non-
standard compression techniques to improve this aspect of network performance without
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(The three non-zero vertical lines for each protocol combination represent, from

left to right, the application, datagram, and frame efficiency for that combination.)
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Table 5.2. Efficiency of Different Protocols Using Standard ATM Procedures

modifying the Internet protocols running on the end hosts. The following discussion addresses
this and other compression issues.

5.5.2. Effects of Non-Standard Compression Techniques

Figures 5.7 through 5.9 and Tables 5.3 through 5.5 show the efficiency obtained when an
ATM network uses three non-standard compression techniques in isolation and in tandem.
These techniques make use of several types of redundancy in the protocol hierarchy. Cell pad-
ding carries no useful information and is by definition redundant. There is also redundancy
between TCP-IP headers in consecutive datagrams for the same TCP connection, and between
cell headers in consecutive cells for the same frame. Finally, there is redundancy between a reli-
able transport protocol like TCP and proposed framing and adaptation protocols.

The first technique, pad deletion, deletes padding bytes from partially filled cells and
transmits the resulting variable-length cells. The second technique, cell header suppression,
inhibits the headers for all but the first cell in a frame. It transmits all cell payloads for a frame in
a burst accompanied by only one cell header. The third technique, datagram header encoding,
compresses TCP-IP headers through differential encoding. It takes advantage of the predictable
changes between successive headers for the same TCP connection. This encoding scheme has
been previously demonstrated to achieve a 10-to-1 compression ratio of TCP-IP headers [48]. In
our calculations, we assume the same compression ratio for 40-byte TCP-IP headers but leave
28-byte UDP-IP headers intact.

Although the transmission efficiency advantages of these compression techniques are evi-
dent in Figures 5.7 through 5.9 and Tables 5.3 through 5.5, two concerns remain: First, can the
techniques be used without violating the ATM standard? Second, can they be implemented
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Figure 5.7. Efficiency of the SMDS-802.6 Protocols Using Compression Techniques
(The three non-zero vertical lines for each compression technique represent, from
left to right, the application, datagram, and frame efficiency for that technique.)
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Table 5.3. Efficiency of the SMDS-802.6 Protocols Using Compression Techniques

cheaply? We address these two issues by discussing how existing networks can implement these
techniques. First, we note that all three techniques are realizable without violating the ATM
standard in the interface presented to network clients. ATM is merely a service definition − it
defines an interface, not an implementation technique. The ATM network can transform data to
the compressed format once the data is inside the network, and convert it back to the standard
format before it leaves the network. Second, we show how these compression techniques can be
implemented with low hardware, software, and processing overhead.

Pad deletion and cell header suppression have been successfully implemented in 45
Megabit/second hardware for Xunet 2, an experimental wide-area ATM network that spans the
continental United States [35]. Pad deletion and cell header suppression are available as an
optional framing format in which the data for each frame is carried as a consecutive train of
compressed cells. This non-standard format is used only in the 45 Megabit/second trunks used
for long-haul transmission, since they are a scarce and expensive resource. The ATM standard is
maintained in other parts of Xunet 2 where transmission efficiency is not a concern, for example
in the 500 Megabit/second switch backplane, which is over-engineered to avoid congestion.

In the trunk interfaces of Xunet 2 switches, cell header suppression can be implemented
with a 2-byte register to hold the last ATM Virtual Circuit Identifier (VCI) seen, and a compara-
tor to match new VCIs with the last VCI seen. When the first uncompressed cell for a frame
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Figure 5.8. Efficiency of the XFRS-none Protocols Using Compression Techniques
(The three non-zero vertical lines for each compression technique represent, from left to right,
the application, datagram, and frame efficiency for that technique.)
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Table 5.4. Efficiency of the XFRS-none Protocols Using Compression Techniques

arrives for transmission, the VCI is saved and the full cell is prepared for transmission. If subse-
quent uncompressed cells with matching VCIs arrive, the cell header is suppressed and only the
payload is transmitted. To expand the compressed frame at the receiving trunk interface, the VCI
in the first cell header is again saved. As subsequent 48-byte payloads are assembled, a new cell
header is dynamically manufactured using the saved VCI and then prepended to the payloads.
The frame length information provided by XFRS helps to identify the last payload for a frame.

A drawback of cell header suppression is that once a cell has been added to a compressed
train, the cell cannot be independently transmitted. This grouping can preclude some of the mul-
tiplexing policies explored in Chapter 4, for example cell-by-cell round robin among virtual cir-
cuits. However, we note that compressed trains are formed immediately before cells are
transmitted over a trunk and are disassembled immediately after they are received. Thus, multi-
plexing techniques that act on independent cells can still function in other parts of the network.

Pad deletion can be pipelined with header suppression in Xunet 2 trunk interfaces. It
requires a 48-byte first-in first-out (FIFO) buffer to prepare arriving payloads for transmission,
and a counter to keep track of how many bytes of padding are in a payload. The counter is ini-
tialized to zero before each uncompressed payload is processed for transmission. As the bytes of
a payload arrive, they are buffered in the FIFO. The counter is incremented whenever a zero
byte arrives, and reset to zero whenever a non-zero byte arrives. When the full payload is



- 77 -

Efficiency (percentage)

Compression
Technique

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

None

Pad Deletion

Cell Header Suppression

Datagram Header Encoding

All

Figure 5.9. Efficiency of the none-SAR Protocols Using Compression Techniques
(The left and right non-zero vertical lines for each compression technique represent

the application and datagram/frame efficiency, respectively, for that technique.)
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Table 5.5. Efficiency of the none-SAR Protocols Using Compression Techniques

processed, the counter holds the number of consecutive zero bytes at the end of the payload. In
the case of the last payload for a frame, these trailing bytes are considered padding and are not
transmitted, resulting in a variable-length payload. To regenerate fixed-length payloads at the
receiving trunk interface, data is fragmented into 48-byte payloads until the last, possibly incom-
plete, fragment is reached. This last fragment is then padded with zeros to a length of 48 bytes,
if necessary. Again, the frame length information provided by XFRS helps to identify the last
payload for a frame.

Datagram header encoding is currently used in the Internet by hosts connected to low-speed
serial lines. Predictive differential encoding of TCP-IP headers has been implemented with
minor modifications to the Unix kernel operating system kernel. The nature of these
modifications are documented in Reference [48]. They are also included in the Serial Line IP
(SLIP) software distribution that has been used for several years throughout the Internet. The
same techniques are applicable within an ATM network if each TCP connection maps to a
separate virtual circuit in a connection-oriented ATM network. However, they may not be feasi-
ble if multiple TCP connections are multiplexed onto a single virtual circuit, as explored in
Chapter 4.
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5.5.3. Summary of Efficiency Results

In addition to the results shown in Figures 5.6 through 5.9 and Tables 5.2 through 5.5, we
calculated efficiency for all combinations of two or more compression techniques. For XFRS,
we also compared the efficiency of the proposed XFRS with trailer alignment to that of a
modified XFRS without alignment. Finally, we produced curves of efficiency versus cell pay-
load size similar to those in Figure 5.1 for our range of protocol combinations and efficiency
measures. From all these results, we reach these conclusions:� Transmission efficiency is a function of cell payload size, protocol overhead, and traffic

mix. The impact of cell fragmentation is sensitive to small changes in certain design
dimensions and insensitive to large changes in others.� Pad deletion can improve application efficiency by 4.7 to 8.1%, datagram efficiency by 6.9
to 11.9%, and frame efficiency by 6.9 to 13.9%.� Cell header suppression can improve application efficiency by 3.2 to 5.9%, datagram
efficiency by 4.7 to 8.8%, and frame efficiency by 5.4 to 10.4%.� Datagram header encoding can improve application efficiency by 5.0 to 12.7%. In this
case, datagram and frame efficiency may drop because compressing datagram headers sub-
tracts from the numerator in those efficiency calculations.� Simultaneously applying all three compression techniques improves application efficiency
by 24.6 to 34.0%. Datagram efficiency improves by 11.9 to 21.1% and frame efficiency by
15.2 to 24.4%, but these figures also include the negative effects of datagram header
compression on these calculations.� For XFRS-none, aligning the frame trailer so that it is on an 8-byte boundary and fits
entirely in the last cell causes less than 1% loss in application and datagram efficiency.
Frame efficiency with alignment is better by almost 3% because the larger aligned frames
add to the numerator in that efficiency calculation.� For XFRS-none, the combination of pad deletion and cell header suppression can raise
application efficiency to 57.5%, datagram efficiency to 84.4%, and frame efficiency to
96.5%, for improvements of 12.8%, 18.9%, and 21.6%, respectively. This combination is
used by Xunet 2’s optional compressed framing format, and can translate to substantial
bandwidth savings on that network’s 45 Megabit/second long-haul trunks.

5.6. Conclusions

We have compared the transmission efficiency obtained by different ATM-related network
protocols when transporting wide-area data traffic, using both standard procedures and a range of
non-standard compression techniques. Throughout, we found that ATM efficiency is alarmingly
low for many proposed protocols and procedures, and that efficiency has variable sensitivity to
changes in protocol overhead due to the effects of cell padding. We conclude that the standard
payload size of 48 bytes is particularly bad for an ATM network that carries traditional types of
traffic. The choices and compromises made by the standards bodies were in this case unfor-
tunate.

Given that the ATM standard is fixed, we are not free to change its basic service. However,
we are free to select many other network parameters. For example, the bare ATM service does
not detect corrupted data. Some framing and adaptation protocols address single-bit errors,
some address the loss of an integral number of cells, and some address both types of corruption.
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The benefits of providing a rich framing or adaptation service should be compared to the
efficiency lost to larger headers and trailers.

Our calculations show that reducing the overhead of related adaptation and framing proto-
cols improves efficiency, sometimes dramatically due to the variable sensitivity already men-
tioned. We have also shown that compression techniques can moderately improve efficiency
when used in isolation, and significantly improve efficiency when used in combination. More-
over, these techniques can be implemented without adding undue complexity to the network.
These results should be taken into account when designing future networks, and transmission
efficiency should be among the principal tradeoffs considered when engineering a cell-based net-
work.
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6. Conclusions

In this dissertation, we have presented work in the areas of traffic characterization, network
simulation, multiplexing policies, and transmission efficiency. This chapter concludes the
dissertation. It summarizes our contributions, points out the applicability of our results, suggests
areas for future work, and comments on the benefits of our methodology.

6.1. Summary of Contributions

We have produced results in five main areas: wide-area traffic traces, characteristics of
application-level conversations, workload models for wide-area internetwork simulation, poli-
cies for multiplexing traffic at the entrance to wide-area networks, and transmission efficiency of
cell-based networks. We summarize these contributions below.

First, we gathered traces of several days of continuous wide-area network activity at a
number of sites in the Internet. These traces contain a record of every packet flowing through
the local-area to wide-area network junction at their respective sites. Each record includes the
raw transport-level and network-level protocol headers from the packet, and a high-resolution
timestamp of the packet’s arrival at the tracing instrument. We have upwards of 75 million such
records saved on magnetic tape. No previous measurements of wide-area Internet traffic com-
bine raw data for every packet and high-resolution timestamps. Our traces thus contain a wealth
of detailed information that is not readily available from other sources.

Second, we extracted from the traces important characteristics of application-level conver-
sations for each major type of wide-area network traffic. We found that FTP, NNTP, SMTP,
TELNET and RLOGIN account for the majority of packets, bytes, and conversations in current
wide-area traffic. We separated these traffic types into two broad categories, bulk transfer and
interactive. Examples of the former are FTP, NNTP, and SMTP, and examples of the latter are
TELNET and RLOGIN. We collected per-conversation histograms of the number of bytes
transferred, the number of packets transferred, packet size, packet interarrival time, duration, and
other statistics. Regarding bulk transfer conversations, we found that they are smaller than pre-
viously assumed, are bidirectional rather than unidirectional, and include small packets in addi-
tion to large packets. Regarding interactive conversations, we found that they account for a
higher percentage of traffic than previously believed, are asymmetrical rather than symmetric,
and include large packets in addition to small packets. These observations may affect results
from previous studies of network performance.

Third, we derived from our traces a new empirical workload model for driving wide-area
internetwork simulations. We produced a generalized model for two major classes of network
application, bulk transfer and interactive. The model reproduces behavior specific to each appli-
cation by sampling measured probability distributions through the inverse transform method.
Our model is realistic, in that it accurately reproduces characteristics of real traffic, and efficient,
in that it is suitable for simulations of high-speed wide-area netwoks without consuming inordi-
nate amounts of computing resources. Most importantly, unlike other trace-based traffic models,
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our model is network-independent. It is applicable to network conditions other than the ones
prevalent when the measurements were taken.

Fourth, we evaluated policies for multiplexing datagrams over virtual circuits. We showed
that networks should establish one virtual circuit per type of traffic flowing between two network
points of presence, not one virtual circuit per conversation or one per pair of such points. In
addition, networks should provide round-robin service to the virtual circuits sharing a communi-
cation link, not first-in first-out service. This policy provides minimum delay to interactive
applications and maximum throughput to bulk transfer applications. This policy also consumes
modest amounts of buffer memory at the bottleneck point. These buffer consumption benefits
come at a moderate loss of fairness in the throughput provided to the bulk transfer conversations
sharing a virtual circuit. Our results suggest a simple and effective scheme for managing wide-
area networks, namely establishing and servicing permanent virtual circuits according to the pol-
icy outlined above.

Fifth, we calculated the transmission efficiency of cell-based networks in transporting
wide-area data traffic. We find that networks using standard protocols are inefficient. For exam-
ple, ATM-based networks using SMDS and IEEE 802.6 protocols lose more than 40% of their
bandwidth to overhead at the network level and below. Due to interaction between TCP-IP
datagram lengths and ATM cell padding, efficiency responds abruptly to changes in certain pro-
tocol parameters − for example, a 4-byte increase in cell payload size can yield a 10% increase
in efficiency. Furthermore, we find that viable compression techniques can significantly improve
efficiency. For example, a combination of three compression techniques can regain more than
20% of the bandwidth previously lost to overhead.

6.2. Applicability of Results

In order to keep the multiplexing problem tractable, we narrowed the scope of our study to
cell-based virtual circuit networks that carry traditional datagram traffic. Our results naturally
apply to this important class of network and workload. However, the contributions outlined
above also apply to many research areas not directly addressed by this dissertation. We describe
five such applications below.

First, the uses for our traffic traces have been only partially exploited. For example, the
information in the traces could be used to characterize geographic patterns of network usage [81]
and thus plan where in the network available resources should be allocated. Similarly, these
usage patterns can be used to study routing issues. We have already made these traces available
to other network researchers at Bolt, Beranek, and Newman in Cambridge, Massachusetts,
Lawrence Berkeley Laboratory in Berkeley, California, and the Swedish Institute of Computer
Science in Stockholm.

Second, our characterization of wide-area data traffic and the resulting workload model can
be used to drive a wide range of network performance studies. Our traffic model is independent
of any specific network or any specific transport protocol. Therefore, it can be used whenever
traditional wide-area data traffic is part of the workload of interest. For example, flow control
and congestion control strategies for wide-area networks are active areas of current research that
can benefit from our model. Our traffic model could also be used to study how new types of
wide-area networks would react to a traditional workload. Future networks will most likely
carry a mix of traffic not found in our traces. However, these networks will need to support trad-
itional data traffic. It will be several years before the current traffic mix changes appreciably,
and considerably longer before traditional traffic disappears altogether.
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Third, our multiplexing results apply to datagram-based networks. We recall that our
definition of a virtual circuit implies only a connection establishment and teardown procedure, a
fixed path through the network, and a separate queue at every multiplexing point. Given that our
study used permanent virtual circuits, our results do not depend on the dynamics of virtual cir-
cuit establishment and teardown. In addition, since routing tables seldom change in practice, our
fixed path assumption holds even in the case of datagram networks. Datagram networks tradi-
tionally have not separated traffic either by type or by conversation. However, there is no funda-
mental reason why they cannot. Therefore, we suggest that datagram networks should separate
traffic types and that they should provide round-robin service to shared communication links. A
datagram network can inspect each arriving datagram in the same way we inspected our traffic
traces. It can then separate traffic by type and provide each type a separate queue.

Fourth, our results apply to reservation-oriented networks. Some proposed networks
reserve parts of their memory and bandwidth in order to provide performance guarantees [31]
[102]. These networks will carry two broad types of traffic: real-time traffic, which has stringent
delay and bandwidth requirements, and best-effort traffic, which has less rigorous requirements.
The network gives priority to the real-time traffic component, and then allocates any remaining
resources to the best-effort traffic. We simulated reservationless networks carrying best-effort
traffic. However, in the context of a reservation-oriented network, our results show how to give
good performance to best-effort traffic while making efficient use of the resources left over by
real-time traffic.

Fifth, our results may find application in local-area ATM networks. ATM is rapidly gain-
ing popularity in local-area environments [3] [17] [22] [64] [95]. This popularity is due both to
the service integration advantages of cell-based networks over packet-based networks and to the
benefits of point-to-point networks over broadcast networks [87]. Many of the traffic multiplex-
ing issues we have addressed in the context of wide-area networks also apply to the limited
resource conditions found in ATM host-network interfaces. In that environment, many design
decisions are guided by the costs of connecting each host to the network, including buffer
memory costs.

At the very least, the results of our work are directly applicable to wide-area networks
based on ATM. There will exist many such networks. ATM is an international standard with
broad support from telecommunication providers and computer manufacturers alike [4]. One
early wide-area ATM network is Xunet 2 [35], alluded to in Chapter 5. Xunet 2 is an experi-
mental 45 Megabit/second network that spans the continental United States. It began operation
in 1992 after replacing the slower Xunet 1, which we used as an example in Chapter 1. Xunet 2
connects the University of California at Berkeley, the University of Illinois at Urbana-
Champaign, the University of Wisconsin at Madison, AT&T Bell Laboratories in Murray Hill,
New Jersey, and Lawrence Livermore and Sandia National Laboratories in Livermore, Califor-
nia. Xunet 2 will eventually carry scientific visualization and other experimental traffic. How-
ever, it will also carry traffic from traditional applications that use the IP datagram protocol.

6.3. Areas for Future Work

We have succeeded in finding multiplexing policies and mechanisms that meet our stated
objectives of performance, fairness, and efficiency. However, our work could be extended in
several areas. In this section, we outline six such areas for future work.
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First, we should evaluate the impact of our new workload model on the results of previous
studies. As discussed in Chapters 2 and 3, our measured traffic characteristics and consequently
our workload model contradict previous models of wide-area data traffic. Many simulation stu-
dies of wide-area networks have been based on the older models. We should repeat these stu-
dies, preserving all previous conditions but substituting our new workload model. We believe
our model is more realistic and will therefore yield more valid results. If the new results match
the old ones, then the results are not sensitive to the differences in the underlying traffic models
and will help to validate each other. If the results don’t match, however, the conclusions of pre-
vious studies should be re-evaluated in light of the discrepancies.

Second, we should characterize the conversation arrival pattern at the entrance to wide-area
networks. As noted in Chapter 3, we were unable to form a realistic and network-independent
model of conversation arrivals. Our traces showed that these arrivals depend on geographic site,
day of the week, time of day, and possibly other factors. Further analysis of traces from more
than the four sites used in our study may yield insight into these conversation arrival processes.

Third, we should find effective policies for caching virtual circuits in networks without per-
manent virtual circuits. Due to the lack of a conversation interarrival model noted above, our
study concentrated on periods of intra-conversation activity and used permanent virtual circuits.
It did not address the issue of how long dynamic virtual circuits should remain open once the
conversations using them have ceased. Idle virtual circuits waste network resources, especially
in a network with resource reservations. On the other hand, when there is no appropriate virtual
circuit to carry newly arrived data, the data must wait until one is established. In a wide-area
network this process can entail considerable delays due to the round-trip time through the net-
work. We need a policy for managing these tradeoffs. It is likely that an adaptive scheme will
be better than any static policy due to the variability of conversation arrival processes. A more
thorough investigation into this matter would be valuable.

Fourth, we should explore the effects of larger bulk transfers on our multiplexing results.
One of the expected effects of increasing communication speeds is an increase in the size of bulk
transfers. Our one year and three months of measurement activity did not show this trend, but
we should not ignore the possibility that bulk transfers will get larger. For example, consider the
rising popularity of document facsimile (FAX) and other digitized images, which can involve
large amounts of data per item. Larger bulk transfers may increase the severity of the unfairness
problem reported in Chapter 4. A possible solution woud be to perform round-robin queueing
among the packet queues for conversations sharing a virtual circuit, not only among the cell
queues for virtual circuits sharing a link. This policy may improve fairness in the throughput
given to bulk transfer conversations. However, this policy may increase memory consumption
for the same reasons given in Chapter 4 for why per-conversation VCs consume excessive
amounts of memory. Evaluating the exact tradeoffs is a subject for future work.

Fifth, we should extend our simulation study to larger networks. In order to keep the simu-
lations tractable, we simulated a simple network with only two routers and one switch. This
configuration isolated the multiplexing problem to one of the routers at the entrance to the wide-
area portion of the network, but voided the functionality of the switch internal to the wide-area
portion of the network. It would be worthwhile to simulate networks where switches had multi-
ple input and output lines in order to study the effect of the resulting cross-traffic on the multi-
plexing performance of the network.
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Sixth, we should confirm our simulation results through experiment. Throughout our work,
we were careful to insure realistic results. For this purpose, we based our study on measure-
ments of real network traffic, we developed empirical models of this traffic, and we validated our
simulator in various ways. Nevertheless, a judicious choice of experiments involving a real net-
work like Xunet 2 would serve to further validate our simulation results. As already mentioned,
the Xunet 2 network embodies the traffic multiplexing issues addressed in this dissertation.
Unfortunately, as of this writing, the full Xunet 2 configuration is not yet operational. Although
the network’s switches and links already provide basic ATM connectivity between the member
sites, hardware and software for its routers are still under development. When these routers
come on line, traffic multiplexing experiments on Xunet 2 would be a valuable addition to our
work.

6.4. Benefits of Our Methodology

We would like to stress the benefits of our research methods to the study of networks in
general. Our empirical approach to constructing models of traditional data traffic should be
applied to other types of traffic. We should measure, analyze, and empirically model traffic
types as they mature. We should not rely on intuitive ideas of their behavior as we have with
traditional wide-area network traffic. As we saw in Chapter 2, our intuition is often wrong.

We have described the first steps in building and maintaining a collection of compact gen-
erative models of existing traffic types. We should extend our collection to include the increas-
ingly common document facsimile (FAX) traffic. FAX is a bulk transfer application with many
qualitative similarities to file transfers, network news, and electronic mail. We should measure
its exact characteristics and extract those histograms used by our generalized bulk transfer
model. We should also form new empirical models for real-time traffic as soon as video and
audio applications become widespread, and add them to the current collection.

This process should be continuous, not limited to isolated research activities. From their
inception, networks should be instrumented to monitor usage patterns as part of their normal
operation. When these patterns change due either to the introduction of new traffic types or to
other changes in user behavior, past design decisions should be re-evaluated and network param-
eters tuned if necessary. The latest traffic information should also guide the design of future net-
works.

6.5. Final Remarks

Communication networks are growing rapidly as people and their data become better con-
nected across large distances. The resulting aggregation of traffic creates many problems for the
design of data networks. We hope our measurement, analysis, and modeling efforts have
brought about a better understanding of the sources of wide-area network traffic. We also hope
our work will lead to better ways of mixing traffic from many different sources at the entrance to
wide-area networks.
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A. Comparison of Traffic Characteristics

Figures A.1 through A.8 present a comparison of application-level conversation
characteristics found in data from three sites at which traffic was measured: the University of
California at Berkeley (UCB), the University of Southern California (USC) in Los Angeles, and
Bell Communications Research (BCR) in Morristown, New Jersey. The characteristics are very
similar. The only significant discrepancies are in the packet interarrival times for bulk transfer
conversations (see Figure A.6), which can be explained by the different clock resolutions
represented in the three traces. In the body of the dissertation, we treat the UCB characteristics
as representative of the three.
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B. Comparison of Efficiency Results

Tables B.1 through B.3 present a comparison of transmission efficiency results obtained
with data from four sites at which traffic was measured: the University of California at Berkeley
(UCB), the University of Southern California (USC) in Los Angeles, AT&T Bell Laboratories
(BL) in Murray Hill, New Jersey, and Bell Communications Research (BCR) in Morristown,
New Jersey. The results are very similar. In the body of the dissertation, we treat the UCB
results as representative of the four.
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Table B.1. Application Efficiency Using Standard ATM Procedures
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Table B.2. Datagram Efficiency Using Standard ATM Procedures
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Table B.3. Frame Efficiency Using Standard ATM Procedures
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C. Acronyms and Abbreviations

This appendix contains a glossary of acronyms and abbreviations used throughout the
dissertation.

802.6 IEEE segmentation and reassembly protocol for ATM networks
ATM Asynchronous Transfer Mode
BCR Bell Communications Research or Bellcore
B-ISDN Broadband Integrated Services Digital Network
BL AT&T Bell Laboratories
CCITT International Telegraph and Telephone Consultative Committee
DC 10 Cadre Teambox Mailbox 10
DOMAIN Domain name service protocol
DS3 45 Megabit/second long-haul transmission standard
FINGER User information query protocol
FTP File Transfer Protocol
IEEE Institute of Electrical and Electronic Engineers
ICMP Internet Control Message Protocol
IP Internet Protocol
IRCD Internet Relay Chat Daemon
MSP Message Stream Protocol
MTU Maximum Transmission Unit
NNTP Network News Transfer Protocol
NTP Network Time Protocol
RCP Remote copy protocol
RLOGIN Remote login protocol
ROUTE Routing information exchange protocol
SAR Bolt, Beranek and Newman Segmentation And Reassembly protocol
SMTP Simple Mail Transfer Protocol
SMDS Switched Multi-Megabit Data Service
TCP Transmission Control Protocol
TELNET Remote terminal protocol
UCB University of California at Berkeley
UDP User Datagram Protocol
USC University of Southern California
UUCP Unix to Unix Copy Program
VC Virtual Circuit
VCSIM Virtual Circuit Simulator
VMNET Virtual machine job transfer protocol
X11 X11 window system
XFRS Xunet 2 Frame Relay Service


